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Principles of sustainability economics: Extended correction guide 

Chapter 6, problems 6.1 to 6.6 

Problem 6.1: Quantity restriction 
 

i. For sector 1, as emission and production units are identical, we can simply replace 𝑄ଵ by 𝐸ଵ in 
all marginal  expressions  for 𝑄ଵ, which  leads  to 𝑀𝑁𝐵ଵ

ா ൌ 10 െ 𝐸ଵ.  For  sector  2,  it  is  less 
immediate. Following the hint, we get first the expressions for total benefits and total costs 

by  integrating  the  functions  of  𝑀𝐵ଶ
ொ
  and  𝑀𝐶ଶ

ொ
  (or  calculating  the  area  below  the 

corresponding  schedules,  see Technical Appendix A1)  to obtain: 𝑇𝐵ଶ ൌ 10𝑄ଶ െ 0.25ሺ𝑄ଶሻଶ 
and 𝑇𝐶ଶ ൌ 0.25ሺ𝑄ଶሻଶ. Then, we replace 𝑄ଶ by 0.5𝐸ଶ and get: 𝑇𝐵ଶ ൌ 5𝐸ଶ െ 0.0625ሺ𝐸ଶሻଶ and 
𝑇𝐶ଶ ൌ 0.0625ሺ𝐸ଶሻଶ. Finally, taking the derivative with respect to 𝐸ଶ we obtain 𝑀𝐵ଶ

ா ൌ 5 െ
0.125𝐸ଶ and 𝑀𝐶ଶ

ா ൌ 0.125𝐸ଶ, which implies that 𝑀𝑁𝐵ଶ
ா ൌ 5 െ 0.25𝐸ଶ. 

 
Note. One could be  tempted  to say  that  the above method  followed  for sector 2  is unnecessarily 
complicated, and suggest that directly substituting 0.5𝐸ଶ for 𝑄ଶ into the marginal expressions in 𝑄ଶ 
would be quicker. But in this case we would obtain 𝑀𝐵ଶ

ா ൌ 10 െ 0.25𝐸ଶ and 𝑀𝐶ଶ
ா ൌ 0.25𝐸ଶ, which 

would be both wrong. Where does the mistake come from? Basically, because when we substitute 
directly we fail considering the fact that the derivative variable itself has changed. Generally speaking, 

the marginal benefit with respect to emission units should be written 𝑀𝐵ଶ
ா ൌ 𝜕𝑇𝐵ଶ/𝜕𝐸ଶ where 𝑇𝐵ଶ 

is a function of 𝑄ଶ which is itself a function of 𝐸ଶ. The same reasoning applies 𝑀𝐶ଶ
ா ൌ 𝜕𝑇𝐶ଶ/𝜕𝐸ଶ.  By 

applying the chain derivation rule we obtain: 𝑀𝐵ଶ
ா ൌ 𝜕𝑇𝐵ଶ 𝜕𝐸ଶ⁄ ൌ ሾ𝜕𝑇𝐵ଶ 𝜕𝑄ଶ⁄ ሿሾ𝜕𝑄ଶ 𝜕𝐸ଶ⁄ ሿ ൌ

𝑀𝐵ଶ
ொሾ1/2ሿ, 𝑀𝐶ଶ

ா ൌ 𝜕𝑇𝐶ଶ 𝜕𝐸ଶ⁄ ൌ ሾ𝜕𝑇𝐶ଶ 𝜕𝑄ଶ⁄ ሿሾ𝜕𝑄ଶ 𝜕𝐸ଶ⁄ ሿ ൌ 𝑀𝐶ଶ
ொሾ1/2ሿ.  Substituting 0.5𝐸ଶ for 𝑄ଶ in 

𝑀𝐵ଶ
ொ
 and 𝑀𝐶ଶ

ொ
 we obtain the correct expressions. 

 
ii.  The diagrams below are from the excel file problem_6.1.xlsx. The inverted expressions of the 

marginal net benefit curves 𝑀𝑁𝐵ଵ ൌ 10 െ 𝐸ଵ and 𝑀𝑁𝐵ଶ ൌ 5 െ 0.25𝐸ଶ are given by 𝐸ଵ ൌ
10 െ 𝑝 and 𝐸ଶ ൌ 20 െ 4𝑝 where 𝑝 represents the variable on the vertical axis. If 𝑝 ൐ 5, only 
sector 1 is considered. If 𝑝 ൑ 5 we add up the two sources of emissions to obtain: 𝐸 ൌ 𝐸ଵ ൅
𝐸ଶ ൌ 30 െ 5𝑝, or 𝑀𝑁𝐵ா ൌ 6 െ 0.2𝐸, which corresponds to the lower part of the kinked curve 
on the right panel.  

 
See the completed Excel file problem_6.1.xlsx 

At the market equilibrium the net marginal benefit is equal to 0 in each sector. This leads to 𝐸ଵ ൌ 10 
and 𝐸ଶ ൌ 20. Note that this is equivalent to equalizing marginal benefit with marginal cost: 𝑀𝐵ଵ

ா ൌ
𝑀𝐶ଵ

ா ⇒ 10 െ 0.5𝐸ଵ ൌ 0.5𝐸ଵ ⇒ 𝐸ଵ ൌ 10 and 𝑀𝐵ଶ
ா ൌ 𝑀𝐶ଶ

ா ⇒ 5 െ 0.125𝐸ଶ ൌ 0.125𝐸ଶ ⇒ 𝐸ଶ ൌ 20. 
 

Figure C6.1: Socially efficient level of emissions 
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The  social  optimum  is  obtained  at  the  intersection  between  the 𝑀𝑁𝐵ா   curve  and  the marginal 

damage (𝑀𝐷) curve i.e. 6 െ 02𝐸 ൌ 3  0.2𝐸 ൌ 3  𝐸 ൌ 15 and 𝑝 ൌ 𝑀𝑁𝐵ா ൌ 𝑀𝐷 ൌ 3. This leads 
to 𝐸ଵ ൌ 10 െ 3 ൌ 7 and 𝐸ଶ ൌ 20 െ 4ሺ3ሻ ൌ 8. Logically, a major reduction of emissions is imposed on 
the dirtiest sector. 
 
The change in social welfare is given by the difference between the reduction in damage costs (area 
between 15 and 30 below the 𝑀𝐷 curve) and the reduction  in net private welfare (area below the 

𝑀𝑁𝐵ா  curve). Numerically this gives: ሾ15ሺ3ሻሿ െ ቂ15 ቀ
ଷ

ଶ
ቁቃ ൌ ቂ15 ቀ

ଷ

ଶ
ቁቃ ൌ 22.5. 

 
iii. The aggregate reduction in emissions is 15 units, thus each sector produces 15/2 ൌ 7.5 units. 

In comparison with the social optimum situation, as illustrated by figure C6.2, this leads to a 
change  in net benefits of ൅𝑎𝑐𝑑𝑒 for sector 1 and of െ𝑓𝑔ℎ𝑖 for sector 2. The net change  in 

social  welfare  is  therefore  given  by  – ሺ𝑓𝑔𝑗 ൅ 𝑎𝑏𝑐ሻ ൌ – ሺ
ଵ

ଶ
⋅
ଵ

ଶ
⋅
ଵ

଼
൅

ଵ

ଶ
⋅
ଵ

ଶ
⋅
ଵ

ଶ
ሻ ൌ െ

ହ

ଷଶ
.  The 

principle  of  𝑇𝐵𝑀  is  violated,  because  both  sectors  do  not  produce  the  quantity  at  the 
intersection between the 𝑀𝑁𝐵௜ curve and the 𝑀𝐷 curve (as determined in point ii). 

 
 

iv. If the 𝑀𝐷 curve increases, the quantity produced by each sector at the optimum decreases. 
This means that quantity restrictions increase as the 𝑀𝐷 curve shifts up. The critical thresholds 
are achieved when the 𝑀𝐷 curve is greater than the 𝑀𝑁𝐵 curve for each sector. Beyond these 
thresholds, the quantity produced becomes zero. Sector 2 no longer produces when 𝑀𝐷 ൌ 5 
and sector 1 stops producing when 𝑀𝐷 ൌ 10. 

 

Problem 6.2: Abatement 
 

i. Let us call 𝑀𝐴𝐶 ൌ 𝛥, from the 𝑀𝐴𝐶௜ expressions we get 𝐴ଵ ൌ 9√𝛥 and 𝐴ଶ ൌ 3√𝛥 which 

leads to 𝐴 ൌ 𝐴ଵ ൅ 𝐴ଶ ൌ 12√𝛥 ⇒ 𝑀𝐴𝐶 ൌ ቀ ஺
ଵଶ
ቁ
ଶ
. The optimum is achieved when 𝑀𝐴𝐶 ൌ

𝑀𝐷 ൌ 3 ⇒ ቀ ஺
ଵଶ
ቁ
ଶ
ൌ 3 ⇒ 𝐴 ൌ 12√3, 𝐴ଵ ൌ 9√3 and 𝐴ଶ ൌ 3√3.  

 

See the completed Excel file problem_6.2.xlsx 
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Figure C6.2: Identical reduction of emissions in each sector 
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Figure C6.3: Socially efficient abatement – two abatement technologies  

To plot the curves, be aware that emission levels are on the horizontal axis, so abatement levels should 

be considered from right to left on the same axis. Knowing that 𝐸௣ ൌ 50 and 𝐸 ൌ 𝐸௣ െ 𝐴, we can set 

𝑀𝐴𝐶 ൌ ቀହ଴ି ா

ଵଶ
ቁ
ଶ
. Following  the same approach and knowing that 𝐸ଵ

௣ ൌ 𝐸ଶ
௣ ൌ

ா೛

ଶ
ൌ 25, we can set  

𝑀𝐴𝐶ଵ ൌ ቀଶହି ாభ
ଽ

ቁ
ଶ
 and 𝑀𝐴𝐶ଶ ൌ ቀଶହି ாమ

ଷ
ቁ
ଶ
 (with the restriction that 0 ൑ 𝐸ଵ,𝐸ଶ ൑ 25). The aggregated 

𝑀𝐴𝐶 curve shows a kink due to the difference between the two technologies, occurring when abated 
emissions from technology 1 reach their maximum (𝐸ଵ ൌ 0):  

𝑀𝐴𝐶 ൌ ቐ
ቀ஺ିଶହ

ଷ
ቁ
ଶ
𝑖𝑓 𝑀𝐴𝐶 ൐ ቀଶହି଴

ଽ
ቁ
ଶ
≅ 7.71

ቀ ஺
ଵଶ
ቁ
ଶ
𝑖𝑓 𝑀𝐴𝐶 ൑ ቀଶହି଴

ଽ
ቁ
ଶ
≅ 7.71

.  

 

To determine  the net welfare gain, we consider  the social benefit  resulting  from  the  reduction of 

damages  given  by  area 𝐴𝐵𝐶𝐷 ൌ 3𝐴 ൌ 3ሺ12√3ሻ ൌ 36√3  and  the  abatement  costs  given  by  area 

𝐵𝐶𝐷 ൌ න ቀ ஺
ଵଶ
ቁ
ଶ
𝑑𝐴

ଵଶ√ଷ

଴
ൌ ൤ଵ

ଷ
ቀ ஺
ଵଶ
ቁ
ଷ
⋅ 12൨

଴

ଵଶ√ଷ

ൌ ቂ ଵ

ଷ⋅ଵଶమ
𝐴ଷቃ

଴

ଵଶ√ଷ
ൌ 12√3.  Therefore,  the  net  welfare 

gain is given by 𝐴𝐵𝐶𝐷 െ 𝐵𝐶𝐷 ൌ 24√3. 
 

ii. If both technologies abate the same level, we have 𝐴ଵ ൌ 𝐴ଶ ൌ
஺

ଶ
ൌ 6√3. We can see from the 

following figure that this leads to a net change in benefits of ൅𝑎𝑐𝑑𝑒 for technology 1 and of 
െ𝑓𝑔ℎ𝑖 for technology 2. The net change in welfare is therefore given by െሺ𝑎𝑏𝑐 ൅ 𝑓𝑔𝑗ሻ. 
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Figure C6.4: Identical reduction of emissions in each sector  
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The area 𝑎𝑏𝑐 ൌ 𝑎𝑏𝑑𝑒 െ 𝑎𝑐𝑑𝑒 where 𝑎𝑏𝑑𝑒 ൌ 3ሺ9√3 െ 6√3ሻ ൌ 9√3 and 𝑎𝑐𝑑𝑒 ൌ න ቀ஺భ
ଽ
ቁ
ଶଽ√ଷ

଺√ଷ
𝑑𝐴 ൌ

ฬଵ
ଷ
ቀ஺భ
ଽ
ቁ
ଷ
⋅ 9ฬ

଺√ଷ

ଽ√ଷ

ൌ ቚ ଵ

ଷ⋅ଽమ
𝐴ଵ

ଷቚ
଺√ଷ

ଽ√ଷ
ൌ 9√3 െ

଼

ଽ
√3ଷ ൌ 9√3 െ

଼

ଷ
√3 ൌ

ଵଽ

ଷ
√3. We thus obtain 𝑎𝑏𝑐 ൌ 9√3 െ

ଵଽ

ଷ
√3 ൌ

଼

ଷ
√3.  Similarly,  the  area  𝑓𝑔𝑗 ൌ 𝑓𝑔ℎ𝑖 െ 𝑗𝑔ℎ𝑖  where  𝑓𝑔ℎ𝑖 ൌ න ቀ஺మ

ଷ
ቁ
ଶ଺√ଷ

ଷ√ଷ
𝑑𝐴 ൌ ฬଵ

ଷ
ቀ஺మ
ଷ
ቁ
ଷ
⋅

3ฬ
ଷ√ଷ

଺√ଷ
ൌ 8√3ଷ െ √3ଷ ൌ 24√3 െ 3√3 ൌ 21√3  and  𝑗𝑔ℎ𝑖 ൌ 3ሺ6√3 െ 3√3ሻ ൌ 9√3. We  thus  obtain 

𝑓𝑔𝑗 ൌ 21√3 െ 9√3 ൌ 12√3.  Therefore,  the  net  change  in welfare  is െሺ𝑎𝑏𝑐 ൅ 𝑓𝑔𝑗ሻ ൌ െሺ 
଼

ଷ
√3 ൅

12√3ሻ ൌ െ
ସସ

ଷ
√3. 

 

The principle of 𝑇𝐶𝑀 is violated, because both sectors do not abate the quantity at the intersection 

between the 𝑀𝐴𝐶௜ curve and the 𝑀𝐷 curve (as determined in point i). Technology 1 is cheaper, so it 

should abate more than technology 2. 

 

iii. The intuition is similar to point iv. of problem 6.1. If the 𝑀𝐷 curve increases, the abatement 

effort by each technology at the optimum increases. The critical thresholds are achieved when 

the 𝑀𝐷 curve reaches the maximal abatement effort i.e. when 𝐴ଵ ൌ 𝐴ଶ ൌ 25. Beyond these 
thresholds,  if  the 𝑀𝐷 curve continues  to  rise,  the abatement effort does not  increase. To 

determine  the  thresholds, we  set  𝐴ଵ ൌ 25 ⇒ 𝑀𝐷 ൌ ቀଶହ
ଽ
ቁ
ଶ
≅ 7.72  and  𝐴ଶ ൌ 25 ⇒ 𝑀𝐷 ൌ

ቀଶହ
ଷ
ቁ
ଶ
≅ 69.44. The higher value is explained by the higher abatement cost of technology 2 

compared with technology 1. 

 

Problem 6.3: Optimal combination of restriction and abatement 

 
i. To draw the graph of figure 6.6, we need to determine the expression for social marginal cost 

𝑆𝑀𝐶. The expression [3] in section 6.1.4 is given by 𝑆𝑀𝐶ሺ𝑄ሻ ൌ
ௗௌ்஼

ௗொ
ൌ 𝑀𝐷ට

ொబ
ொ
. We know that 

𝑝௔ ൌ 𝑀𝐷 ൌ 3 ⇒ 𝑄଴ ൌ 1, so we get 𝑆𝑀𝐶 ൌ 𝑀𝐷
ଵ

ඥொ
ൌ

ெ஽

ඥொ
ൌ

ଷ

ඥொ
. At the optimum, the social 

efficiency condition is achieved when 𝑆𝑀𝐶 ൌ 𝑀𝑁𝐵ொ ⇒
ଷ

ඥொ
ൌ

ଶ଴

ଷ
െ

ସ

ଷ
ඥ𝑄. We then define 𝑞 ൌ

ඥ𝑄 and replace it in the above expression to obtain 𝑞ሺ20 െ 4𝑞ሻ ൌ 9 ⇒ 4𝑞ଶ െ 20𝑞 ൅ 9 ൌ 0. 

Using  the  formula  for  solving a quadratic  function, we get 𝛥 ൌ √400 െ 144 ൌ 16 ⇒ 𝑞ଵ ൌ
ଶ଴ିଵ଺

଼
ൌ

ଵ

ଶ
, 𝑞ଶ ൌ

ଶ଴ାଵ଺

଼
ൌ

ଽ

ଶ
⇒ 𝑄ଵ ൌ

ଵ

ସ
,𝑄ଶ ൌ

଼ଵ

ସ
. 
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Remember from section 6.1.4 that 𝑄଴ represents the critical quantity level, where the optimal input 

mix for 𝑄, i.e. ெ஽
௣ೌ

ൌ
ଵା௔

ா
 implies the absence of abatement activities (𝑎 ൌ 0). In other words, this is 

the threshold below which abatement becomes pointless because  it would have to be negative to 

achieve the optimal combination of inputs. Therefore, the 𝑆𝑀𝐶 curve (solid orange line) presents a 

kink at 𝑄 ൌ 𝑄଴ and the quantity 𝑄ଵ ൌ
ଵ

ସ
൏ 𝑄଴ is not an optimal quantity at the social optimum. 

 

 

ii. In order to calculate net social welfare, we first need to determine the quantity produced in 

the three different situations. The socially optimal quantity when quantity restriction as well 

as  abatement  activities  are  possible  was  determined  at  point  i,  i.e.  𝑄ଶ ൌ
଼ଵ

ସ
.  The  social 

optimum  when  considering  quantity  restriction  only  is  given  by  the  quantity  such  that 

𝑀𝑁𝐵ொ ൌ 𝑀𝐷 ⇒
ଶ଴

ଷ
െ

ସ

ଷ
ඥ𝑄 ൌ 3 ⇒

ସ

ଷ
ඥ𝑄 ൌ

ଵଵ

ଷ
⇒ ඥ𝑄 ൌ

ଵଵ

ସ
⇒ 𝑄ଷ ൌ

ଵଶଵ

ଵ଺
ൌ 7.5625.  At  the 

market equilibrium, when neither pollution damages nor abatement activities are considered, 

the quantity produced is given by the point where 𝑀𝑁𝐵ொ ൌ 0 ⇒
ଶ଴

ଷ
െ

ସ

ଷ
ඥ𝑄 ൌ 0 ⇒ 𝑄ସ ൌ 25.  

 

The net social welfare at the market equilibrium (𝑄ସ) is given by subtracting the area below the 𝑀𝐷 
curve from the area below the 𝑀𝑁𝐵ொ curve from 𝑄 ൌ 0 to 𝑄ସ. We get:  

𝐴𝑄ସ𝑂 െ 𝐶𝐷𝑄ସ𝑂 ൌ 𝐴𝐵𝐶 െ 𝐵𝐷𝑄ସ ൌ ׬ ሺ𝑀𝑁𝐵ொ െ𝑀𝐷ሻ𝑑𝑄
ொయ
଴ െ ׬ ሺ𝑀𝑁𝐵ொ െ𝑀𝐷ሻ𝑑𝑄

ொర
ொయ

ൌ න ቀଵଵ
ଷ
െ

ொయ

଴

ସ

ଷ
𝑄
భ
మቁ 𝑑𝑄 െන ቀସ

ଷ
𝑄
భ
మ െ

ଵଵ

ଷ
ቁ 𝑑𝑄

ொర

ொయ

ൌ ቂଵଵ
ଷ
𝑄 െ

଼

ଽ
𝑄
య
మቃ
଴

ொయ
െ ቂ଼

ଽ
𝑄
య
మ െ

ଵଵ

ଷ
𝑄ቃ

ொయ

ொర
ൌ ቂଵଷଷଵ

ସ଼
െ

଼

ଽ
ቀଵଷଷଵ

଺ସ
ቁቃ െ

ቂቀ଼
ଽ
ሺ125ሻ െ

ଶ଻ହ

ଷ
ቁ െ ቀ଼

ଽ
ቀଵଷଷଵ

଺ସ
ቁ െ

ଵଷଷଵ

ସ଼
ቁቃ ൌ ቀଵଷଷଵ

ଵସସ
ቁ െ ൬ଶ଼଴଴

ଵସସ
െ ቀെ

ଵଷଷଵ

ଵସସ
ቁ൰ ൌ െ

ଶ଼଴଴

ଵସସ
ൌ െ19. 4ത. 

 

The net social welfare at the restriction‐only equilibrium (𝑄ଷ) is given by subtracting the area below 
the 𝑀𝐷 curve from the area below the 𝑀𝑁𝐵ொ curve from 𝑄 ൌ 0 to 𝑄ଷ. We get: 

𝐴𝐵𝑄ଷ0 െ 𝐶𝐵𝑄ଷ0 ൌ 𝐴𝐵𝐶 ൌ ׬ ሺ𝑀𝑁𝐵ொ െ𝑀𝐷ሻ𝑑𝑄
ொయ
଴ ൌ

ଵଷଷଵ

ଵସସ
≅ 9.24. 

 

The net social welfare at the restriction‐cum‐abatement optimum (𝑄ଶ) is given by subtracting the area 
below the 𝑆𝑀𝐶 curve from the area below the 𝑀𝑁𝐵ொ curve from 𝑄 ൌ 0 to 𝑄ଶ. The social gain is given 
by  𝐴𝐺𝑄ଶ0 െ 𝐶𝐸𝐺𝑄ଶ0 ൌ 𝐴𝐵𝐶 ൅ 𝐸𝐵𝐹 ൅ 𝐵𝐺𝐹,  where  𝐴𝐵𝐶  is  the  part  of  gain  similar  to  the  two 

𝐹 

𝐸
𝑀𝐷 𝐷 𝐵

𝑆𝑀𝐶 

3 

𝑄ଶ  𝑄ସ 

𝐶 

Figure C6.5: The social marginal cost  
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previous optimality situations and 𝐸𝐵𝐹 ൅ 𝐵𝐺𝐹 corresponds to the  improved cost‐efficiency due to 

optimal mixing with abatement activities. We obtain: 

𝐸𝐵𝐹 ൌ ׬ ሺ𝑀𝐷 െ 𝑆𝑀𝐶ሻ 𝑑𝑄
ொయ
ொబ

ൌ න ቀ3 െ 3𝑄ି
భ
మቁ 𝑑𝑄

ொయ

ொబ

ൌ ቂ3𝑄 െ 6𝑄
భ
మቃ
ொబ

ொయ

ൌ ቂቀଷ଺ଷ
ଵ଺

െ
ଷଷ

ଶ
ቁ െ ሺ3 െ 6ሻቃ ൌ

ଵସ଻

ଵ଺
ൌ 9.1875  and  𝐵𝐺𝐹 ൌ ׬ ሺ𝑀𝑁𝐵ொ െ 𝑆𝑀𝐶ሻ 𝑑𝑄

ொమ
ொయ

ൌ න ቀଶ଴
ଷ
െ

ସ

ଷ
𝑄
భ
మ െ 3𝑄ି

భ
మቁ 𝑑𝑄

ொమ

ொయ

ൌ ቂଶ଴
ଷ
𝑄 െ

଼

ଽ
𝑄
య
మ െ

6𝑄
భ
మቃ
ொయ

ொమ
ൌ ሺ135 െ 81 െ 27ሻ െ ቀ଺଴ହ

ଵଶ
െ

ଵଷଷଵ

଻ଶ
െ

ଷଷ

ଶ
ቁ ൌ ቀ27 െ

ଵଵଵଵ

଻ଶ
ቁ ≅ 11.57.  

 

Therefore, the social gain due to optimal mixing is 𝐸𝐵𝐹 ൅  𝐵𝐺𝐹 ≅ 20.76 and the total social gain is 
𝐴𝐵𝐶 ൅ 𝐸𝐵𝐹 ൅  𝐵𝐺𝐹 ≅ 20.76 ൅ 9.24 ൌ 30. 
 

 

iii. The quantity produced at the social optimum is 𝑄ଶ ൌ
଼ଵ

ସ
.  

 

We can determine the isoquant function by using the expressions [2] in section 6.1.4, which give the 

optimal inputs as a function of production level. By plugging known values into these expressions, we 

obtain  𝐸∗ ൌ 𝐸ሺ𝑄ଶሻ ൌ ඥ𝑄ଶ𝑄଴ ൌ √20.25 ⋅ 1 ൌ ට଼ଵ

ସ
ൌ 4.5  and  𝑎∗ ൌ 𝑎ሺ𝑄ଶሻ ൌ ට

ொమ
ொబ
െ 1 ൌ ට଼ଵ

ସ
െ 1 ൌ

3.5. The isoquant representing the optimal input mix, i.e. the optimal combination of 𝐸 and 𝑎 for a fix 

quantity 𝑄ଶ, is given by 𝑄ଶ ൌ 𝐸ሺ𝑎 ൅ 1ሻ ⇒ 𝑎 ൅ 1 ൌ
ொమ
ா
⇒ 𝑎 ൌ 𝑄ଶ ⋅

ଵ

ா
െ 1 ⇒ 𝑎 ൌ

଼ଵ

ସ
⋅
ଵ

ா
െ 1. As shown 

in figure C6.6, 𝑄ଶ is located at the point where the isoquant crosses the horizontal axis (𝑎 ൌ 0). Note 

that the slope of the isoquant at the social optimum is equal to 
ௗ௔

ௗா
ൌ െ𝑄ଶ ⋅

ଵ

ாమ
ൌ െ

଼ଵ

ସ

ଵ

ቀ
వ
మ
ቁ
మ ൌ െ1. 

 

The  iso‐cost curve represents the ሺ𝐸, 𝑎ሻ combinations such that social total cost remains constant. 

The value of 𝑆𝑇𝐶തതതതത can be determined by plugging the optimal values of 𝐸∗ and 𝑎∗ into the expression 
𝑆𝑇𝐶തതതതത ൌ  𝑝௔ ∙ 𝑎 ൅ 𝑀𝐷 ∙ 𝐸 ൌ 3ሺ3.5 ൅ 4.5ሻ ൌ 24. Taking the initial expression and rearranging in terms 

of 𝑎, we obtain 24 ൌ  3ሺ𝑎 ൅ 𝐸ሻ  ⇒ 𝑎 ൌ 8 െ 𝐸  i.e. a straight  line with a slope of  ‐1, confirming the 

tangency between the isoquant and the iso‐cost curve. 

 

Recall  that abated emissions are obtained by subtracting  the  level of emissions  from  the quantity 

produced, such that 𝐴∗ ൌ 𝑄ଶ െ 𝐸∗ ൌ
଼ଵ

ସ
െ

ଽ

ଶ
ൌ

଺ଷ

ସ
ൌ 15.75. 

 

The above expressions can be graphically represented as follows: 
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iv. Let’s use the usual notation of growth rates 𝑥ො to define the percentage change of variable 𝑥, 
i.e. 𝑀𝐷෢  the percentage change in 𝑀𝐷 and let’s break down what happens when 𝑀𝐷෢ ൐ 0. The 
impact of an increase in 𝑀𝐷 can be determined using the useful properties for growth rates 

presented in Technical Appendix A1. 

 

On the one hand,  increasing 𝑀𝐷  is  in turn accompanied by a decrease  in 𝑄଴, the critical threshold 

above  which  abatement  becomes  socially  worthwhile.  Recalling  that  𝑄଴ ൌ
௉ೌ

ெ஽
  and  using  the 

logarithmic  differentiation  properties,  we  find  that  the  magnitude  of  the  reduction  is  roughly 

equivalent to the increase in 𝑀𝐷, i.e. 𝑄෠଴ ≅ െ𝑀𝐷෢ .  On the other hand, the rise in 𝑀𝐷 is associated by 
an  increase  in 𝑆𝑀𝐶, which  is quite  intuitive as pollution becomes more damaging, making optimal 

mixing more attractive. Recalling that 𝑆𝑀𝐶 ൌ 𝑀𝐷ට
ொబ
ொ
 and using the same properties, we obtain that 

the percentage change of 𝑆𝑀𝐶 for a given value of 𝑄 (i.e. a percentage change of 𝑄 equal to zero) is 

given  by    𝑆𝑀𝐶෣൫𝑖𝑓 𝑄෠ ൌ 0൯ ≅ 𝑀𝐷෢ ൅
ଵ

ଶ
൫𝑄෠଴ െ 𝑄෠൯ ൌ 𝑀𝐷෢ ൅

ଵ

ଶ
𝑄෠଴ ൌ 𝑀𝐷෢ െ

ଵ

ଶ
𝑀𝐷෢ ൌ

ଵ

ଶ
𝑀𝐷෢ .  The  optimal 

quantity at the social optimum will therefore decrease, because as the 𝑆𝑀𝐶 curve shifts up, the point 
where this curve crosses the 𝑀𝑁𝐵ொ curve is associated with a smaller quantity on the horizontal axis 

(see figure C6.5). 

 

Two remarks: 

 

Lifting the ambiguity on 𝒂ෝ and 𝑨෡. As the isoquant shifts in and the iso‐cost curve becomes steeper, 

we know for sure that 𝐸 will decrease, but the evolution of 𝑎 and 𝐴 is apparently ambiguous. We can 

in fact lift this ambiguity by total differentiation of the optimality condition 𝑆𝑀𝐶 ൌ 𝑀𝑁𝐵ொ. For that, 
we once again use the usual properties of growth rates denoting 𝑥ො (see Technical Appendix A1) to 

obtain  𝑆𝑀𝐶෣ ൌ𝑀𝐷෢ ൅
ଵ

ଶ
൫𝑄෠଴ െ 𝑄෠൯ ൌ

ଵ

ଶ
𝑀𝐷෢ െ

ଵ

ଶ
𝑄෠   on  the  one  hand. 𝑀𝑁𝐵෣ொ  can  be  determined  by 

recalling  that 𝑀𝑁𝐵ொ ൌ
ଶ଴

ଷ
െ

ସ

ଷ
ඥ𝑄  and  using  the  properties  of  growth  rates  of  a  sum  and  our 

knowledge  of  the  initial  optimal  value  of 𝑄ଶ
଴ ൌ

଼ଵ

ସ
⇒ 𝑀𝑁𝐵ொሺ𝑄ଶ

଴ሻ ൌ  𝑆𝑀𝐶ሺ𝑄ଶ
଴ሻ ൌ

ଶ

ଷ
.  This  leads  to 

𝑀𝑁𝐵෣ொ ൌ
ଶ଴ോଷ

ெே஻ೂ
⋅ 0 െ

ସോଷඥொ

ெே஻ೂ
⋅
ଵ

ଶ
𝑄෠ ൌ െ

ଶ଴ോଷିெே஻ೂ

ெே஻ೂ
⋅
ଵ

ଶ
𝑄෠ ൌ െ

ሺଶ଴ോଷሻିௌெ஼൫ொమ
బ൯

ௌெ஼൫ொమ
బ൯

⋅
ଵ

ଶ
𝑄෠ ൌ െ

ሺଶ଴ോଷሻିଶോଷ

ଶോଷ
⋅

10  𝐸

𝐴∗ 

𝑄ଶ 

𝐵

𝑄തଶ ൌ 𝐸∗ሺ1 ൅ 𝑎∗ሻ 

െ1 
𝐸∗  25 

5 

Figure C6.6: The optimal mix  
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ଵ

ଶ
𝑄෠ ൌ െ

ଽ

ଶ
𝑄෠   on  the  other  hand.  Applying  𝑆𝑀𝐶෣ ൌ𝑀𝑁𝐵෣ொ  leads  to 

ଵ

ଶ
𝑀𝐷෢ െ

ଵ

ଶ
𝑄෠ ൌ െ

ଽ

ଶ
𝑄෠ ⇒ 4𝑄෠ ൌ

െ
ଵ

ଶ
𝑀𝐷෢ ⇒ 𝑄෠ ൌ െ

ଵ

଼
𝑀𝐷෢ .  Total  differentiation  of  conditions  [2]  in  section  6.1.4  leads  thus  to 𝐸෠ ൌ

ଵ

ଶ
൫𝑄෠ ൅ 𝑄෠଴൯ ൌ

ଵ

ଶ
ቂെ

ଵ

଼
𝑀𝐷෢ െ𝑀𝐷෢ ቃ ൌ െ

ଽ

ଵ଺
𝑀𝐷෢   and  1 ൅ 𝑎෣ ൌ

ଵ

ଶ
൫𝑄෠ െ 𝑄଴൯ ൌ

ଵ

ଶ
ቂെ

ଵ

଼
𝑀𝐷෢ ൅𝑀𝐷෢ ቃ ൌ

଻

ଵ଺
𝑀𝐷෢  

so we know that 𝑎 increases. Moreover, as 𝐴 ൌ 𝐸௉ െ 𝐸 ൌ 𝑄 െ 𝐸, where 𝑄 ൌ 𝑄ଶ
଴ ൌ

଼ଵ

ସ
, 𝐸 ൌ

ଽ

ଶ
ൌ 𝐸଴ 

and 𝐴 ൌ 𝐴଴ ൌ
଺ଷ

ସ
, we can calculate that 𝐴መ ൌ

ொమ
బ

஺బ
𝑄෠ െ

ாబ

஺బ
𝐸෠ ൌ

଼ଵ

଺ଷ
ቀെ

ଵ

଼
𝑀𝐷෢ ቁ െ

ଵ଼

଺ଷ
ቀെ

ଽ

ଵ଺
𝑀𝐷෢ ቁ ൌ 0, so we 

conclude that 𝐴 remains constant. This is due to our ad hoc specification of the production function. 

Moreover, this is only true in linear approximation. As worksheet calculations can illustrate, in fact the 

level of abated emissions decreases slightly. The impact of shifting the isoquant and the iso‐cost curve 

(solid orange and blue lines) can be observed in the following figure. 

 

Limit cases. As 𝑀𝐷 keeps on  increasing, we can think of two possible  limit cases  illustrated by the 

stylized diagrams below. In case a), the 𝑀𝐷 is so high that the restriction‐only optimal quantity (𝑄ଷ) 
becomes  equal  to  the  critical  threshold  for  abatement  activities  (𝑄଴).  In  that  case  combining 

abatement with  restrictions  remains  clearly worthwhile  socially  speaking,  as  the 𝑀𝑁𝐵ொ  curve  is 
systematically above the 𝑆𝑀𝐶 schedule. In case b), the MD is even higher so that the restriction‐only 

optimal quantity becomes zero (negative values make no economic sense) and, in the case drawn, the 

net social loss on the first units (from 𝑄 ൌ 0 to 𝑄ଵ i.e. the pink area) is perfectly compensated by the 

net  social  gain  on  the  last  units  (from 𝑄 ൌ 𝑄ଵ  to 𝑄ଶ  i.e.  the  green  area).  In  this  limit  case,  the 

benevolent planer would just be indifferent between combining abatement with restriction at 𝑄ଶ or 
dropping production altogether. 

𝐴∗ 

𝐸𝑄ଶ 

𝑄തଶ ൌ 𝐸∗ሺ1 ൅ 𝑎∗ሻ 

െ1 
𝐸∗ 

Figure C6.7: Impact of an increase in 𝑀𝐷 

𝑎 
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𝐸଴ 𝑄ଶ
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Problem 6.4: Pollution control in Cleartown 

 
Marginal benefit (𝑴𝑩): from the 𝑀𝐷 function, as 𝐸 ൌ 30 െ 𝐴, one can write the 𝑀𝐵 of abatement 
function as 𝑀𝐵 ൌ 10ሺ30 െ 𝐴ሻ െ 50 ൌ 250 െ 10𝐴 for 5 ൏ 𝐸 ൏ 25 i.e. 5 ൏ 𝐴 ൏ 25 (and hopefully it 
is in this interval that the optimal abatement will locate, as confirmed below). 
 
Marginal cost of total abatement (𝑴𝑨𝑪): the efficient allocation of effort has to follow the principle 
of  TCM  (see  chapter  1)  i.e. 𝑀𝐴𝐶ଵ ൌ 𝑎ଵ𝐴ଵ ൌ 𝑀𝐴𝐶ଶ ൌ 𝑎ଶ𝐴ଶ ൌ 𝑀𝐴𝐶, where  𝑎ଵ  and  𝑎ଶ  are  fixed 
coefficients (with different values depending on the question, see below). Rearranging this leads to 

𝐴ଵ ൌ
ெ஺஼

௔భ
, 𝐴ଶ ൌ

ெ஺஼

௔మ
, so that 𝐴 ൌ 𝐴ଵ ൅ 𝐴ଶ ൌ 𝑀𝐴𝐶

ሺ௔భା௔మሻ

௔భ௔మ
 or still 𝑀𝐴𝐶 ൌ 𝐴

௔భ௔మ
௔భା௔మ

. 

i. If 𝑎ଵ ൌ 10, 𝑎ଶ ൌ 20, then 𝑀𝐴𝐶 ൌ 𝐴ሺ20/3ሻ.  
Optimality  condition  (principle  of  TNBM):  𝑀𝐵 ൌ 250 െ 10𝐴 ൌ 𝑀𝐴𝐶 ൌ 𝐴ሺ20/3ሻ  which 
implies 𝐴 ∗ൌ 15, 𝑀𝐴𝐶 ൌ 𝑀𝐵 ൌ 100, 𝐴ଵ

∗ ൌ 100/10 ൌ 10 (so 𝐸ଵ
∗ ൌ 20 െ 10 ൌ 10) and 𝐴ଶ

∗ ൌ
100/20 ൌ 5 (so 𝐸ଶ

∗ ൌ 10 െ 5 ൌ 5). 

 
ii. In that case, by chance, the authority has set the legal constraint equal to the efficient level, 

both in the aggregate and for each producer. So there is no welfare loss because both total 
abatement  (𝐴∗ ൌ 15)  and  individual  abatement  (𝐴ଵ

∗ ൌ 10  and 𝐴ଶ
∗ ൌ 5)  are  equal  to  their 

optimal  level. But  this  is so only because  the  largest emitter  (producer 1)  is also  the most 
efficient one. If both producers would share the same 𝑀𝐴𝐶 function, they should share the 
same  abatement  effort  at  the  social  optimum.  This  would  mean  an  identical  absolute 
abatement  effort  per  producer which would  be  inconsistent with  the  same  proportional 
abatement effort (50% rule).  

 
To  check  that,  if  𝑎ଵ ൌ 𝑎ଶ ൌ 40/3,  then 𝑀𝐴𝐶 ൌ 𝐴ሺ20/3ሻ  (same  aggregate 𝑀𝐴𝐶  curve,  but with 
different underpinings). TNBM principle: 𝑀𝐵 ൌ 250 െ 10𝐴 ൌ 𝑀𝐴𝐶 ൌ 𝐴ሺ20/3ሻ still implies 𝐴 ∗ൌ 15, 
𝑀𝐴𝐶 ൌ 𝑀𝐵 ൌ 100, but now 𝐴ଵ

∗ ൌ 100ሺ3/40ሻ ൌ 7.5  (so 𝐸ଵ
∗ ൌ 20 െ 7.5 ൌ 12.5) and 𝐴ଶ

∗ ൌ 7.5  (so 
𝐸ଶ
∗ ൌ 10 െ 7.5 ൌ 2.5). So the 50% reduction rule (𝐸ଵ

∗ ൌ 10 and 𝐸ଶ
∗ ൌ 5) implies no welfare loss at the 
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Figure C6.8: Limit cases of an increase in 𝑀𝐷  
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level of global abatement, which  is optimal, but the effort  is not efficiently shared. More precisely, 
with respect to optimal  individual abatement  levels, producer 1 (2) abates too much (too  little) by 
2.5 units. This translates into a wedge between 𝑀𝐴𝐶ଵ ൌ 400/3 and 𝑀𝐴𝐶ଶ ൌ 200/3 and generates a 
net welfare loss of 0.5ሺሺ400/3ሻ െ ሺ200/3ሻሻ2,5 ൌ 250/3 (see dashed areas of diagram below). With 
respect to the total optimal abatement costs of 2ሺ0.5ሻሺ100ሻሺ7.5ሻ ൌ 750, this represents an extra 
cost of roughly 11% (1/9). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6.9: Marginal abatement cost and abatement effort 

iii. If 𝑎ଵ ൌ 10, 𝑎ଶ ൌ 20,  as we have  seen  that  this  case  is  efficient by  chance,  the 𝑀𝐴𝐶  are 
equalized and there are no incentives to trade emission allowances between producers.  

 
To  check  that,  consider  producer  1. Given  the  legal  constraint,  it  has  to  abate  10, which means 
𝑀𝐴𝐶ଵ ൌ 100.  If  the  offered  price  for  allowances  is  larger  than  100,  it would  be willing  to  sell 
allowances (abate more) until the 𝑀𝐴𝐶 equals the price i.e. its excess supply of allowances, 𝐸𝑆ଵ, is 
given by 𝑃 ൌ 𝑎ଵሺ𝐴ଵ

∗ ൅ 𝐸𝑆ଵሻ ൌ 10ሺ10 ൅ 𝐸𝑆ଵሻ.  If the price  is  lower than 100,  it will be ready to buy 
allowances  (abate  less)  until  the  𝑀𝐴𝐶  decreases  to  the  price  level,  i.e.  its  excess  demand  of 
allowances, 𝐸𝐷ଵ, is given by 𝑃 ൌ 10ሺ10 െ 𝐸𝐷ଵሻ. In fact, a negative excess supply is equal to a positive 
excess demand (𝐸𝑆ଵ ൌ െ𝐸𝐷ଵ) and vice versa, so the two equations are equivalent. In the end, a single 
equation is sufficient to describe the willingness to trade by firm 1, e.g 𝑃 ൌ 10ሺ10 ൅ 𝐸𝑆ଵሻ ൌ 100 ൅
10𝐸𝑆ଵ. It shows that the “indifference” price of firm 1 is 100 i.e. if the price is just equal to 100 firm 1 
is neither willing to buy nor to sell allowances. 
 
The same reasoning applied to firm 2 leads to 𝑃 ൌ 𝑎ଶሺ𝐴ଶ

∗ ൅ 𝐸𝑆ଶሻ ൌ 20ሺ5 ൅ 𝐸𝑆ଶሻ ൌ 100 ൅ 20𝐸𝑆ଶ. In 
other words, the indifference price is identical between the two firms, which are just happy like that 
and not willing to trade emission allowances (the  implicit equilibrium price of allowances  is  indeed 
100 but it does not materialize into an effective trade). 
 
Things become more  interesting  if 𝑎ଵ ൌ 𝑎ଶ ൌ 40/3.  In  this case,  the willingness  to  trade emission 
allowances  is given by 𝑃 ൌ ሺ40/3ሻሺ10 ൅ 𝐸𝑆ଵሻ ≅ 133.33 ൅ ሺ40/3ሻ𝐸𝑆ଵ ൌ 133.33 െ ሺ40/3ሻ𝐸𝐷ଵ  for 
firm  1  and  𝑃 ൌ ሺ40/3ሻሺ5 ൅ 𝐸𝑆ଶሻ ≅ 66.66 ൅ ሺ40/3ሻ𝐸𝑆ଶ  for  firm  2.  If  the  price  locates  in  the 
ሾ66.66; 133.33ሿ interval, firm 1 is a consumer and firm 2 a supplier on the market for allowances. The 
situation is represented on the diagram below, with an equilibrium price of 100 and an equilibrium 
quantity of 𝐸𝐷ଵ ൌ 𝐸𝑆ଶ ൌ 2.5. 
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Figure C6.10: Excess supply and demand of allowances 

In that case, allowing firms to trade allowances generates a net gain for society, which is equivalent 

to the extra cost already calculated at point ii. (the scale of the horizontal axis is different but the total 

shaded area is indeed identical between the two diagrams). 

 

Problem 6.5: Cap&trade 

 
As  the authority wants  to  reduce emissions by 14 units,  it  sells 16 units  to  firms  (and  introduces 

prohibitive penalties so that firms respect allowances). Each firm will abate as long as the price is larger 

than  its abatement cost, so we find the  level of abatement by equalizing price  (𝑃) to the marginal 

abatement cost of each firm i.e. 𝑃 ൌ 0.5 ൅ 0.5𝐴ଵ, 𝑃 ൌ 𝐴ଶ and 𝑃 ൌ 1 ൅ 𝐴ଷ, from which we infer 𝐴ଵ ൌ
2𝑃 െ 1, 𝐴ଶ ൌ 𝑃, 𝐴ଷ ൌ 𝑃 െ 1 (note that 𝐴 cannot be negative, so 𝑃 ൐ 0.5 for 1 and 𝑃 ൐ 1 for 3). The 
demand for allowances in each case is simply obtained by 𝐸௜ ൌ 10 െ 𝐴௜, 𝑖 ൌ 1,2,3 that is 𝐸ଵ ൌ 11 െ
2𝑃, 𝐸ଶ ൌ 10 െ 𝑃 and 𝐸ଷ ൌ 11 െ 𝑃. From that we obtain total demand 𝐸 ൌ 32 െ 4𝑃, and as supply is 
equal to 16, we obtain 𝑃 ൌ 4 when demand equals supply. So, the abatement efforts will be 𝐴ଵ ൌ 7, 
𝐴ଶ ൌ 4, 𝐴ଷ ൌ 3. If a tax replaces the cap&trade system, it must be set equal to the equilibrium price 

(4). 
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Problem 6.6: demographic transition  

 

i.  
 
See the completed Excel file problem_6.6.xlsx 
 

 
ii.  

 
We can see on the diagram that there are three possible equilibria where the 45° line and the sigmoid 
curve cross. Using the Excel template (problem_6.5_temp.xlsx), we obtain 𝑥ଵ ≅ 1.32, 𝑥ଶ ≅ 6.29, 𝑥ଷ ≅
13.40. The process is similar to the stylized case of lake eutrophication covered in chapter 4, where 
two equilibria are stable, while the last one is unstable. To understand this, recall that if the fertility 
rate  of  an  additional woman  is  bigger  than  the  average  fertility  rate  of  society,  the  average will 
increase. Conversely, if the fertility rate of an additional woman is smaller than the collective fertility 
rate, this will reduce the average fertility rate. 𝑥ଶ is unstable, because if we locate at this point and 
consider an additional woman, the individual fertility rate will be above average, driving up the total 
fertility rate until 𝑥ଷ is reached. Conversely, if we now consider the last additional woman just before 
point 𝑥ଶ, the individual fertility rate will be below average, so that the total fertility rate will fall until 
𝑥ଵ is reached. Using the same idea, we get that 𝑥ଵ and 𝑥ଷ are stable equilibria.  
 
 

iii.  
 
See the completed Excel file problem_6.6.xlsx 

Figure C6.11: Fertility behavior 
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We  initially  locate at point 𝑥ଷ, where average fertility rate of the society  is very high. An adequate 
policy will affect expectations regarding the number of children for a transitory period, so that every 

new woman entering the population wishes to have fewer children. This will shift the sigmoid curve 

downwards (green curve) and the average fertility rate will decrease. The policy should be sufficiently 

strong to shift the sigmoid curve below the 45° line in the relevant range of 𝑥 values. The policy should 
be maintained until the average fertility reaches the threshold level at point 𝑥ଶ ≅ 6.29. Once this point 
has been reached (𝑥 ൏ 𝑥ଶ), the desired number of children of an additional woman is below average. 

Therefore, even if the policy is abandoned and expectations return to the original sigmoid curve (in 

blue), the average fertility rate will progressively converge towards the low equilibrium level at point 

𝑥ଵ. 
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Figure C6.12: Impact of policy on fertility behavior 


