Principles of sustainability economics: Extended correction guide
Chapter 6, problems 6.1 to 6.6

Problem 6.1: Quantity restriction

i. Forsector 1, as emission and production units are identical, we can simply replace Q; by E; in
all marginal expressions for @, which leads to MNBf =10 — E;. For sector 2, it is less
immediate. Following the hint, we get first the expressions for total benefits and total costs
by integrating the functions of MBZQ and MCZQ (or calculating the area below the
corresponding schedules, see Technical Appendix A1) to obtain: TB, = 10Q, — 0.25(Q,)?
and TC, = 0.25(Q,)?. Then, we replace Q, by 0.5E, and get: TB, = 5E, — 0.0625(E,)? and
TC, = 0.0625(E,)?. Finally, taking the derivative with respect to E, we obtain MBf =5 —
0.125E, and MC£ = 0.125E,, which implies that MNB% = 5 — 0.25E,.

Note. One could be tempted to say that the above method followed for sector 2 is unnecessarily
complicated, and suggest that directly substituting 0.5E, for @, into the marginal expressions in Q,
would be quicker. But in this case we would obtain MBf = 10 — 0.25E, and MCZ = 0.25E,, which
would be both wrong. Where does the mistake come from? Basically, because when we substitute
directly we fail considering the fact that the derivative variable itself has changed. Generally speaking,
the marginal benefit with respect to emission units should be written MBE = 9TB,/dE, where TB,
is a function of Q, which is itself a function of E,. The same reasoning applies MC¥ = 9TC,/0E,. By
applying the chain derivation rule we obtain: MB¥ = dTB,/dE, = [dTB,/0Q,1[0Q,/0E,] =
MBY[1/2], MCE = 0TC,/0E, = [0TC,/0Q,1[0Q,/9E,] = MCL[1/2]. Substituting 0.5E, for Q, in
MBZQ and MC;2 we obtain the correct expressions.

ii. The diagrams below are from the excel file problem_6.1.xIsx. The inverted expressions of the
marginal net benefit curves MNB; = 10 — E; and MNB, =5 — 0.25E, are given by E; =
10 — p and E, = 20 — 4p where p represents the variable on the vertical axis. If p > 5, only
sector 1 is considered. If p < 5 we add up the two sources of emissions to obtain: E = E; +
E, = 30 — 5p,or MNBE = 6 — 0.2E, which corresponds to the lower part of the kinked curve
on the right panel.

See the completed Excel file problem_6.1.xIsx
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Figure C6.1: Socially efficient level of emissions

At the market equilibrium the net marginal benefit is equal to 0 in each sector. This leads to E; = 10
and E, = 20. Note that this is equivalent to equalizing marginal benefit with marginal cost: MB{E =
MCE = 10— 0.5E;, = 0.5E;, > E; = 10 and MBY = MCf{ = 5 — 0.125E, = 0.125E, = E, = 20.

© Grether and Monney (2024) — chapter 6 - 1



The social optimum is obtained at the intersection between the MNBE curve and the marginal
damage (MD) curvei.e. 6 — 02E =3 = 0.2E =3 = E = 15and p = MNBf = MD = 3. This leads

toE; =10 -3 =7and E;, = 20 — 4(3) = 8. Logically, a major reduction of emissions is imposed on
the dirtiest sector.

The change in social welfare is given by the difference between the reduction in damage costs (area
between 15 and 30 below the MD curve) and the reduction in net private welfare (area below the

MNBE curve). Numerically this gives: [15(3)] — [15 (2)] = [15 (%)] = 22.5.

iii. The aggregate reduction in emissions is 15 units, thus each sector produces 15/2 = 7.5 units.
In comparison with the social optimum situation, as illustrated by figure C6.2, this leads to a

change in net benefits of +acde for sector 1 and of —fghi for sector 2. The net change in

social welfare is therefore given by —(fgj+abc)=—(%-%-%+%-%-%)=—%. The

principle of TBM is violated, because both sectors do not produce the quantity at the
intersection between the MNB; curve and the MD curve (as determined in point ii).
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Figure C6.2: Identical reduction of emissions in each sector

iv. If the MD curve increases, the quantity produced by each sector at the optimum decreases.
This means that quantity restrictions increase as the M D curve shifts up. The critical thresholds
are achieved when the M D curve is greater than the MN B curve for each sector. Beyond these
thresholds, the quantity produced becomes zero. Sector 2 no longer produces when MD = 5
and sector 1 stops producing when MD = 10.

Problem 6.2: Abatement

i. Letuscall MAC = A, from the MAC; expressions we get A; = 9v/4 and A, = 3v/4 which
2
leadsto A = A; + A, = 12V/A = MAC = (1'12) . The optimum is achieved when MAC =
2
MD=3=(2) =3=4=12V3,4, = %3and 4, = 3V3.

See the completed Excel file problem_6.2.xIsx
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Figure C6.3: Socially efficient abatement — two abatement technologies

To plot the curves, be aware that emission levels are on the horizontal axis, so abatement levels should
be considered from right to left on the same axis. Knowing that EP = 50 and E = EP — A4, we can set

_E\2 v
MAC = (Sole) . Following the same approach and knowing that Ef = Eé’ = E? = 25, we can set
_ 2 _ 2
MAC, = (25 El) and MAC, = (25 Ez) (with the restriction that 0 < E, E; < 25). The aggregated

MAC curve shows a kink due to the difference between the two technologies, occurring when abated
emissions from technology 1 reach their maximum (E; = 0):

(ﬂ)2 if MAC > (25‘0)2 =771

MAC={" 3¢ TZ :
=) if MAC < (=—) =771
) (=)

To determine the net welfare gain, we consider the social benefit resulting from the reduction of
damages given by area ABCD = 34 = 3(12v3) = 36+/3 and the abatement costs given by area

123 2 3 1243 1243
— A —|1(AY. —[_L 43 _
BCD —fo (12) dA = [3 (12) 12]0 = [3‘122A ]0 = 12+/3. Therefore, the net welfare
gain is given by ABCD — BCD = 24+/3.
ii. If both technologies abate the same level, we have A; = A4, = 4= 6v/3. We can see from the

==
following figure that this leads to a net change in benefits of +acde for technology 1 and of
—f ghi for technology 2. The net change in welfare is therefore given by —(abc + fgj).
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Figure C6.4: Identical reduction of emissions in each sector
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2
The area abc = abde — acde where abde = 3(9v/3 — 6+/3) = 94/3 and acde:f (ﬂ) dA =
V3 S

1(ﬂ)3-9 " = | | % 0y3 — V35 = 03 — £y3 = 22 /3. We thus obtain abc = 9v3 —
3\ o3 3924 o5 5 = 5 V3 = < V3. Wethus obtain abc =

8 63 a2 1 (4,\3

3 ==+/3. Similarly, the area fgj = fghi —jghi where fghi=j (—2) dA = —(—2) .
3 3y \3 3\3

6V3

3| a = 8v33 — /33 = 2443 — 3v/3 = 213 and jghi = 3(6v/3 — 3v3) = 9v3. We thus obtain
3

fgj = 21\/_— 9v3 = 12v/3. Therefore, the net change in welfare is —(abc + fgj) = —(2\/5+
124/3) = —=

The principle of TCM is violated, because both sectors do not abate the quantity at the intersection
between the MAC; curve and the MD curve (as determined in point i). Technology 1 is cheaper, so it
should abate more than technology 2.

iii. The intuition is similar to point iv. of problem 6.1. If the MD curve increases, the abatement
effort by each technology at the optimum increases. The critical thresholds are achieved when
the MD curve reaches the maximal abatement effort i.e. when A; = A, = 25. Beyond these
thresholds, if the MD curve continues to rise, the abatement effort does not increase. To

2
determine the thresholds, we set A; = 25 = MD = (%5) =772 and A, =25=> MD =

2
(23—5) = 69.44. The higher value is explained by the higher abatement cost of technology 2

compared with technology 1.
Problem 6.3: Optimal combination of restriction and abatement

i. Todraw the graph of figure 6.6, we need to determine the expression for social marginal cost

SMC.The expression [3] in section 6.1.4 is given by SMC(Q) = ﬂ = MD [=2. We know that
Pao =MD =3= Qy =1, sowe get SMC = MD\/_ I\V/IB \/_ At the optimum, the social
efficiency condition is achieved when SMC = MNB? = J_5 =—=— \/_ We then define g =

\/5 and replace it in the above expression to obtain q(20 — 4q) =9 > 4q%—-20q+9=0.

Using the formula for soIving a quadratic function, we get 4 =v400—-144 =16 > q; =
20-16 1 20+16 _ _ 81

g 12T 3 =0 = Q z"
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Figure C6.5: The social marginal cost

Remember from section 6.1.4 that Q, represents the critical quantity level, where the optimal input

. . MD _1+a. . . L
mix for Q, i.e. P = % implies the absence of abatement activities (a = 0). In other words, this is

a

the threshold below which abatement becomes pointless because it would have to be negative to
achieve the optimal combination of inputs. Therefore, the SMC curve (solid orange line) presents a

kink at Q = Q, and the quantity Q; = i < @y is not an optimal quantity at the social optimum.

ii. In order to calculate net social welfare, we first need to determine the quantity produced in
the three different situations. The socially optimal quantity when quantity restriction as well

I . . C 81 .
as abatement activities are possible was determined at point i, i.e. Q, = R The social

optimum when considering quantity restriction only is given by the quantity such that
MNB@ = MD :>——§ Q=3>1 \/6_—: 0=2=0,= 121—75625 At the
market equilibrium, when neither poIIutlon damages nor abatement act|V|t|es are considered,

the quantity produced is given by the point where MNB? = 0 = = —g Q=0=Q,=25.

The net social welfare at the market equilibrium (Q,) is given by subtracting the area below the MD
curve from the area below the MNB? curve from Q = 0 to Q,. We get:

Q3
AQ40 — CDQ,0 = ABC — BDQ, = [*(MNB? — MD) dQ — fQQ:(MNBQ — MD)dQ = j u_
0

oo~ [ (f0i-5)de = [o-30i] - foi- o] = 2 -3(32)]-

[( (125) — E) _ (g (12i1) _ 1i21)] _ (1134341) _ (2184040 _ (_ 1134341)> _ 2184040 _19.3.

The net social welfare at the restriction-only equilibrium (Q3) is given by subtracting the area below

the MD curve from the area below the MNB curve from Q = 0 to Q5. We get:

ABQ;0 — CBQ30 = ABC = fOQ3(MNBQ — MD)dQ = ﬂ ~ 9904

Q4

The net social welfare at the restriction-cum-abatement optimum (Q,) is given by subtracting the area
below the SMC curve from the area below the MNB? curve from Q = 0 to Q,. The social gain is given
by AGQ,0 — CEGQ,0 = ABC + EBF + BGF, where ABC is the part of gain similar to the two
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previous optimality situations and EBF + BGF corresponds to the improved cost-efficiency due to
optimal mixing with abatement activities. We obtain:
Q3 1 UE
_ Qs _ _ _ -5 — — 2 —[(383 _33) _ — =
EBF = [2*(MD — SMC) dQ = (3-3072)de =[30-603| =|( )-3B-6)]=

16 2
Qo Qo

4 1 -1 20 g 2
-20:-307)do = [F0 -5z -

147

Q2 Q * -
—= 9.1875 and BGF = sz (MNB? —SMC(C) dQ = fQ3 (?

6(ﬁ]zz = (135 - 81-27) - (42 - B2 _B) - (27 - 1) = 1157,

Therefore, the social gain due to optimal mixing is EBF + BGF = 20.76 and the total social gain is
ABC + EBF + BGF = 20.76 + 9.24 = 30.

iii. The quantity produced at the social optimum is Q, = 84—1.

We can determine the isoquant function by using the expressions [2] in section 6.1.4, which give the
optimal inputs as a function of production level. By plugging known values into these expressions, we

obtain E*=E(Q2)=\/Q2Q0=\/20.25-1=\/§=4.5 and a*=a(Qz)=\/g:z—1=\/€—l—1=

3.5. The isoquant representing the optimal input mix, i.e. the optimal combination of E and a for a fix

quantity Q,, is givenby Q, = E(a+1)=>a+1 =%=>a= Q, -%—1 =>a=84—1-%—1.Asshown
in figure C6.6, Q, is located at the point where the isoquant crosses the horizontal axis (a = 0). Note
that the slope of the isoquant at the social optimum is equal to Z—; =—Q,- % =21 -1

tE)

The iso-cost curve represents the (E,a) combinations such that social total cost remains constant.
The value of STC can be determined by plugging the optimal values of E* and a* into the expression
STC = pg-a+ MD - E = 3(3.5 + 4.5) = 24. Taking the initial expression and rearranging in terms
of a, we obtain 24 = 3(a+ E) = a = 8 —E i.e. a straight line with a slope of -1, confirming the
tangency between the isoquant and the iso-cost curve.

Recall that abated emissions are obtained by subtracting the level of emissions from the quantity

produced, such that A* = Q, — E* = 84—1 —3 = % = 15.75.

The above expressions can be graphically represented as follows:
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Figure C6.6: The optimal mix

iv. Let’s use the usual notation of growth rates X to define the percentage change of variable x,
i.e. MD the percentage change in MD and let’s break down what happens when MD > 0. The
impact of an increase in MD can be determined using the useful properties for growth rates
presented in Technical Appendix Al.

On the one hand, increasing MD is in turn accompanied by a decrease in Q,, the critical threshold

above which abatement becomes socially worthwhile. Recalling that Q, =% and using the

logarithmic differentiation properties, we find that the magnitude of the reduction is roughly
equivalent to the increase in MD, i.e. QO = —MD. On the other hand, the rise in MD is associated by
an increase in SMC, which is quite intuitive as pollution becomes more damaging, making optimal

mixing more attractive. Recalling that SMC = MD\/% and using the same properties, we obtain that

the percentage change of SMC for a given value of Q (i.e. a percentage change of Q equal to zero) is
given by SMC(if Q =0) = MD +%(QO —Q) =MD +%QO = MD —%1\717) = %11717) The optimal
guantity at the social optimum will therefore decrease, because as the SMC curve shifts up, the point

where this curve crosses the MNBY curve is associated with a smaller quantity on the horizontal axis
(see figure C6.5).

Two remarks:

Lifting the ambiguity on @ and 4. As the isoquant shifts in and the iso-cost curve becomes steeper,

we know for sure that E will decrease, but the evolution of a and A is apparently ambiguous. We can

in fact lift this ambiguity by total differentiation of the optimality condition SMC = MNBY. For that,

we once again use the usual properties of growth rates denoting X (see Technical Appendix Al) to

obtain SMC = MD +%(QO -Q)= %IVIT) —%Q on the one hand. MNB? can be determined by
20 4

recalling that MNB? = 5 73 Q and using the properties of growth rates of a sum and our
knowledge of the initial optimal value of Q2 = 84—1 = MNB?(Q2) = sMC(Q?) = % This leads to
RO — 20/3 o _ 4/3,/Q 1a_ 20/3-MNB? 1 A __ (20/3)-sMc(QY) 1a_ _ (20/3)-2/3
MNB MNBQ 0 MNBQ 2 MNBQ 2 Q smMc(Q2) 2 Q 2/3
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—ZQ on the other hand. Applying SMC = MNB9 leads to %1\7I\D —%QA = —%Q =40 =

—%1\7I\D =0 = —%1\7I\D. Total differentiation of conditions [2] in section 6.1.4 leads thus to E =
1/A = 1 1 —~ . 9 1A 1 1 —~ . 7
2(0+Qo)=5|-iMD—MD|=-2MD and T+a=5(Q—Q)=3[-2MD+MD|=_MD
so we know that a increases. Moreover, as A = EF —E = Q — E, where Q = Qg = i—l, E = % =FEO°
~ O ~ 0 ~ — —
and A = A° = 6—3, we can calculate that 4 = Q—EQ —E—OE = E(—lMD) —1—8(—1MD) =0, so we
4 A A 63\ 8 63\ 16

conclude that A remains constant. This is due to our ad hoc specification of the production function.
Moreover, this is only true in linear approximation. As worksheet calculations can illustrate, in fact the
level of abated emissions decreases slightly. The impact of shifting the isoquant and the iso-cost curve
(solid orange and blue lines) can be observed in the following figure.

Q;=E*(1+a)

\
\
\
\
\
\
\
\

(e}
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- --
-1

Figure C6.7: Impact of an increase in MD

Limit cases. As MD keeps on increasing, we can think of two possible limit cases illustrated by the
stylized diagrams below. In case a), the MD is so high that the restriction-only optimal quantity (Q3)
becomes equal to the critical threshold for abatement activities (Qg). In that case combining
abatement with restrictions remains clearly worthwhile socially speaking, as the MNB? curve is
systematically above the SMC schedule. In case b), the MD is even higher so that the restriction-only
optimal quantity becomes zero (negative values make no economic sense) and, in the case drawn, the
net social loss on the first units (from Q = 0 to Q, i.e. the pink area) is perfectly compensated by the
net social gain on the last units (from Q = Q4 to Q, i.e. the green area). In this limit case, the
benevolent planer would just be indifferent between combining abatement with restriction at Q, or
dropping production altogether.
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Figure C6.8: Limit cases of an increase in MD

Problem 6.4: Pollution control in Cleartown

Marginal benefit (MB): from the MD function, as E = 30 — A, one can write the MB of abatement
function as MB = 10(30 — A) — 50 = 250 — 10A for 5 < E < 25i.e. 5 < A < 25 (and hopefully it
is in this interval that the optimal abatement will locate, as confirmed below).

Marginal cost of total abatement (MAC): the efficient allocation of effort has to follow the principle
of TCM (see chapter 1) i.e. MAC; = a,A; = MAC, = a,A, = MAC, where a; and a, are fixed

coefficients (with different values depending on the question, see below). Rearranging this leads to

Ay =" 4, =M sothat A = A, + 4, = MACEE D or still MAC = A2
2

aq aia; a;+a; ’

i. Ifa; =10, a, =20,then MAC = A(20/3).
Optimality condition (principle of TNBM): MB = 250 — 104 = MAC = A(20/3) which
implies A x= 15, MAC = MB = 100, A7 = 100/10 = 10 (so E{ = 20 — 10 = 10) and 4 =
100/20 =5(so E; =10 -5 =5).

ii. Inthat case, by chance, the authority has set the legal constraint equal to the efficient level,
both in the aggregate and for each producer. So there is no welfare loss because both total
abatement (A* = 15) and individual abatement (4] = 10 and A = 5) are equal to their
optimal level. But this is so only because the largest emitter (producer 1) is also the most
efficient one. If both producers would share the same MAC function, they should share the
same abatement effort at the social optimum. This would mean an identical absolute
abatement effort per producer which would be inconsistent with the same proportional
abatement effort (50% rule).

To check that, if a; = a, = 40/3, then MAC = A(20/3) (same aggregate MAC curve, but with
different underpinings). TNBM principle: MB = 250 — 104 = MAC = A(20/3) still implies A *= 15,
MAC = MB = 100, but now A] = 100(3/40) = 7.5 (so E; = 20 — 7.5 = 12.5) and A5 = 7.5 (so
E; =10 — 7.5 = 2.5). So the 50% reduction rule (Ef = 10 and E; = 5) implies no welfare loss at the
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level of global abatement, which is optimal, but the effort is not efficiently shared. More precisely,
with respect to optimal individual abatement levels, producer 1 (2) abates too much (too little) by
2.5 units. This translates into a wedge between MAC; = 400/3 and MAC, = 200/3 and generates a
net welfare loss of 0.5((400/3) — (200/3))2,5 = 250/3 (see dashed areas of diagram below). With
respect to the total optimal abatement costs of 2(0.5)(100)(7.5) = 750, this represents an extra
cost of roughly 11% (1/9).

MAC

/ MAC

100 %

A

5 7.5 10

Figure C6.9: Marginal abatement cost and abatement effort

iii. If a; =10, a, = 20, as we have seen that this case is efficient by chance, the MAC are
equalized and there are no incentives to trade emission allowances between producers.

To check that, consider producer 1. Given the legal constraint, it has to abate 10, which means
MAC,; = 100. If the offered price for allowances is larger than 100, it would be willing to sell
allowances (abate more) until the MAC equals the price i.e. its excess supply of allowances, ES;, is
given by P = a,(A] + ES;) = 10(10 + ES;). If the price is lower than 100, it will be ready to buy
allowances (abate less) until the MAC decreases to the price level, i.e. its excess demand of
allowances, EDy, is given by P = 10(10 — ED;). In fact, a negative excess supply is equal to a positive
excess demand (ES; = —ED;) and vice versa, so the two equations are equivalent. In the end, a single
equation is sufficient to describe the willingness to trade by firm 1, e.g P = 10(10 + ES;) = 100 +
10ES;. It shows that the “indifference” price of firm 1is 100 i.e. if the price is just equal to 100 firm 1
is neither willing to buy nor to sell allowances.

The same reasoning applied to firm 2 leads to P = a,(4; + ES,) = 20(5 + ES,;) = 100 + 20ES,. In
other words, the indifference price is identical between the two firms, which are just happy like that
and not willing to trade emission allowances (the implicit equilibrium price of allowances is indeed
100 but it does not materialize into an effective trade).

Things become more interesting if a; = a, = 40/3. In this case, the willingness to trade emission
allowances is given by P = (40/3)(10 + ES;) = 133.33 + (40/3)ES; = 133.33 — (40/3)ED, for
firm 1 and P = (40/3)(5 + ES,) = 66.66 + (40/3)ES, for firm 2. If the price locates in the
[66.66; 133.33] interval, firm 1 is a consumer and firm 2 a supplier on the market for allowances. The
situation is represented on the diagram below, with an equilibrium price of 100 and an equilibrium
quantity of ED; = ES, = 2.5.
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Figure C6.10: Excess supply and demand of allowances

In that case, allowing firms to trade allowances generates a net gain for society, which is equivalent
to the extra cost already calculated at point ii. (the scale of the horizontal axis is different but the total
shaded area is indeed identical between the two diagrams).

Problem 6.5: Cap&trade

As the authority wants to reduce emissions by 14 units, it sells 16 units to firms (and introduces
prohibitive penalties so that firms respect allowances). Each firm will abate as long as the price is larger
than its abatement cost, so we find the level of abatement by equalizing price (P) to the marginal
abatement cost of each firmi.e. P = 0.5 + 0.54,, P = A, and P = 1 + A3, from which we infer 4; =
2P—-1,A, =P, A; = P — 1 (note that A cannot be negative, so P > 0.5 for 1 and P > 1 for 3). The
demand for allowances in each case is simply obtained by E; = 10 — 4;,i = 1,2,3 thatis E; = 11 —
2P,E, =10 — Pand E3 = 11 — P. From that we obtain total demand E = 32 — 4P, and as supply is
equal to 16, we obtain P = 4 when demand equals supply. So, the abatement efforts will be 4; = 7,
A, = 4, A; = 3. If a tax replaces the cap&trade system, it must be set equal to the equilibrium price

(4).
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Problem 6.6: demographic transition

See the completed Excel file problem_6.6.xIsx
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Figure C6.11: Fertility behavior

We can see on the diagram that there are three possible equilibria where the 45° line and the sigmoid
curve cross. Using the Excel template (problem_6.5_temp.xIsx), we obtain x; = 1.32, x, = 6.29, x3 =
13.40. The process is similar to the stylized case of lake eutrophication covered in chapter 4, where
two equilibria are stable, while the last one is unstable. To understand this, recall that if the fertility
rate of an additional woman is bigger than the average fertility rate of society, the average will
increase. Conversely, if the fertility rate of an additional woman is smaller than the collective fertility
rate, this will reduce the average fertility rate. x, is unstable, because if we locate at this point and
consider an additional woman, the individual fertility rate will be above average, driving up the total
fertility rate until x5 is reached. Conversely, if we now consider the last additional woman just before
point x,, the individual fertility rate will be below average, so that the total fertility rate will fall until
X, is reached. Using the same idea, we get that x; and x; are stable equilibria.

See the completed Excel file problem_6.6.xIsx
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Figure C6.12: Impact of policy on fertility behavior

We initially locate at point x5, where average fertility rate of the society is very high. An adequate
policy will affect expectations regarding the number of children for a transitory period, so that every
new woman entering the population wishes to have fewer children. This will shift the sigmoid curve
downwards (green curve) and the average fertility rate will decrease. The policy should be sufficiently
strong to shift the sigmoid curve below the 45° line in the relevant range of x values. The policy should
be maintained until the average fertility reaches the threshold level at point x, = 6.29. Once this point
has been reached (x < x,), the desired number of children of an additional woman is below average.
Therefore, even if the policy is abandoned and expectations return to the original sigmoid curve (in
blue), the average fertility rate will progressively converge towards the low equilibrium level at point
Xq.
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