Principles of sustainability economics: Extended correction guide
Chapter 4, problems 4.1 to 4.5

Problem 4.1: Sustainable harvesting

i.  MSY is obtained when z—g =r— ZrE, =05 =

N | W»y

=50 = G = (0.02)(50) [1 —%] =05

i. G—H=0 with G=(0.02)S [1 - 1100] = 0.02S — 0.000252 and H = 8(MSY) = 0.50

where 6 = 0.19 or 8 = 0.51 or 8 = 0.75. Multiplying by 50 and regrouping we obtain the
following condition for the steady state level of S:

0.01S2 =S +256 =0

The solutions are given by:

1+V1i-96
_OT=50(1i\/1—6)

Selecting the largest value in each case gives S = 95,85,0r 75if 6 = 0.19,0.51 or 0.75 respectively.

iii. See excel file problem_4.1.xIsx
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Figure C4.1: Harvesting case
We can check in the excel file that in order to achieve 90% of the gap between steady states (of 5, 15
and 25 respectively), one has to wait for around 125, 151 or 194 years respectively = the larger the

gap, the longer the period, but less than proportionately i.e. the larger the pressure, the faster the
exhaustion of the resource.
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Figure C4.2: Restoring case

We can check again in the excel file that in order to achieve 90% of the gap between steady states (of
5, 15 and 25 respectively), one has to wait for around 117, 122 or 128 years respectively = the larger
the gap, the longer the period, but again less than proportionately i.e. the larger the pressure on the
resource has been, the faster the restauration rate of the resource.

Note that this symmetry in behavior between exploiting and restoring the resource is not necessarily
verified in all ecosystems, as commented in the last section of this chapter on hysteresis.

Problem 4.2: Steady-state relationships

WithG =1rS [1 — g_] and H = gES, the condition for the steady state, G = H, leadstor [1 — %] =qE,

which can be re-arranged as: S(E) =§[1 —%E]. Re-introducing this expression in the harvest

function, one obtains the following parabolas: H(E) = ¢S [E — %EZ]
TB(E) = PH(E) = PqS |[E —2E?|.

Problem 4.3: Economic shock

See the diagram. The TC curve becomes flatter. In the case of the open access regime (points B and
B'), this leads to a larger effort level, a smaller harvest, and a scarcity rent that remains equal to zero.
This means that everybody in the community (i.e. those who fish and those who don't) just earn the
wage rate, which has decreased, so total income decreases.

© Grether and Monney (2024) — chapter 4 - 2



TB,TC

Figure C4.3: Economic shock

In the case of efficient harvesting (points A and A’), the effort increases and the harvest also increases.
The scarcity rent increases for two reasons: i. for a given E, TC is smaller (segment A1) and ii. at the
new wage rate, the effort level adjusts to its new optimum level (segment A2). So, the welfare of those
who fish definitely increases. However, for those who do not fish, total income decreases. So, in the
end, the net impact on the whole community depends on the share of fishermen (if it is sufficiently
large, total income increases).

Problem 4.4: Numerical simulation
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Figure C4.4: Gordon-Schaefer model
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Maximum sustainable yield obtained at the hump of the curve i.e. when:

d—G=0:0.04(1—2)_io.045=o=>s=l§ [C4.1]
ds S S 2

Precisions: as G = AS = 0.04S (1 - %) we can write: G = uv whereu = 0.04S,v=1— %, and then

apply the derivative of a product of functions i.e. (uv)’ = u'v + uv’

Which leads to S = 500 for § = 1000, implying G = 10 (in thousand units).

i. The steady state is obtained when G — H = 0, i.e. 0.001ES = 0.04S (1 - %) from which we

obtain 0.001E = 0.04 (1 - %) 0 E = 40 (1 - %) andasS = 1000, E = 40 (1 - 10‘%) s0:

S =1000 — 25E [C4.2]
Plugging back this equation into H = 0.001ES, one obtains the amount harvested, in thousand units.
If we multiply that by 1 (i.e. one thousand francs per unit, or 1 million francs per thousand units), we
obtain total benefit, in million francs, i.e. :

TB = 0.001E(1000 — 25E) = E — 0.025E2 [C4.3]
It can be checked that the maximum is obtained for E = 20, i.e. S = 500, which is consistent with the
maximum sustainable yield identified at point i.

Precision: TB' = 1 — 0.05E, so setting TB' = 0 (maximum) leads indeed to E = 20.

Regarding total cost, it is obtained by multiplying E (in thousand days of fishing) by 0.5 (thousand
francs per fishing day), i.e., in million francs:

TC = 0.5E [C4.4]
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Figure C4.5: Total benefit, total cost, and fish stock

The efficient effort is obtained when dTB / dE = 1 — 0.05E = dTC / dE = 0.5, which leads to E¢ =
E = 10 and (using [2]), S¢ = 750

The open-access fishing level is obtained when TB = TC i.e., after a few manipulations, when E€ =
20 and (using [2]), S€ = 500.

The social welfare loss is given by TB(E¢) —TC(E€) =7.5—5 = 2.5 million francs, and the
overfishing intensity is E€ / E€ = 2.

In this very special case, the open-access fishing effort corresponds to the maximum sustainable yield
(this cannot be generalized).

First, in the case of a decrease in the wage rate, the new total cost is: TC, = 0.25E. As for point iii the
efficient fishing effort is obtained for dTB / dE = dTC / dE, leading to 1 — 005E = 0.25 and thus
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E¢ =15, S¢ = 625. As for point iii the open-access fishing effort is obtained for TB = TC, leading to
E¢ =30and S¢ = 250.

As opportunity costs are lower, a larger fishing effort is accepted, and social welfare is optimized for
a larger harvest. The stock of fishes (S) decreases strongly following this reduction in labor costs.

Second, in the case of an increase in the fish price: P, = 1.5, TB becomes TB, = 0.0015E (1000 —
25E) = 1.5E — 0.0375E2. Thus, E® = 13.333, S = 666.675, E€ = 26.667 and S¢ = 333.325. The
increase in the price of fish increases TB, and with it the fishing effort, which leads to a decrease in
the fish stock.

Whatever the case, the intensity of overfishing is unchanged (E€ / E€¢ = 2).

One must find t (in thousand francs per day) such that the new total cost schedule with the tax
((0.5 4+ t)E) intersects the total benefit schedule at the vertical of E¢, that means when
(0.5 +t)E® = E® — 0.025(E®)?, from which we obtain, replacing E€ by 10, t = 0.25 thousand francs
per day, i.e. an equivalent ad valorem tax of 50%.

Vi.

One must first find the efficient effort in this case, denoted by E?PP, |t is obtained by equalizing the
net marginal revenue of the decrease in effort, i.e. —(dTB /dE — dCT /dE) = —(1 — 0.05E —
0.5) = —0.5 + 0.05E, with the corresponding marginal cost, i.e. 0.25. One obtains E?PP = 15. Then,
if one repeats the same procedure as for point v., but for that effort level, i.e. (0.5 + t)E*PP = PP —
0.025(E®*PP)2, one obtains t = 0.125, i.e. an equivalent ad valorem tax of 25%. Intuitively, as this
policy is more costly than at point v, it must be applied with a lower intensity.

Problem 4.5: Lake eutrophication

See the completed Excel file problem_4.5.xIsx R 1.00

i. As the phosphorus concentration P 0-80

increases, recycling R increases, but the 0.60
relationship is not linear, i.e. the

0.40
. OR .
recycling rate — is not constant.
oP 0.20
0.00 p
R is influenced by the hypolimnion, i.e. the 0.00 0.50 1.00 1.50 2.00

degree of oxygenation of the bottom layer of the
lake. With low levels of P, when it increases, R
increases slowly, because the hypolimnion has enough oxygen. At intermediate levels of P, oxygen
levels drop, boosting up R. Once the inflexion point has been reached, at high levels of P, R slows
again because the lake bottom constantly lacks oxygen.

Figure C4.6: Evolution of R(P)
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To determine the inflexion point of R(P), we compute the first derivative -

R _ 2P(1+P?)-P?%(2P) _

(1+P?)?
2P o : a?R _ 2(14P?)’—2P2(14P?)-2P _ 2(14P?)-8P% _ 2-6P?
VD and determine its maximum value: - = P = TP e and
. d?R 2-6P? 2 2 1 1 1/3
f—_—= = = = — = = = - = — = — = (). .
evaluating to 0: -5 =0 RIDE 0=2-6P°=0=>P"=-=P NG and R 2/3 0.25

Note that P has to be positive, so we only have 1 solution.

To find A7,;45, Which corresponds to the slope at the inflexion point, we have to substitute P = —in

1

d L 25
d—i, which gives % = %5.
(1+?)

V3

ii. The steady state equilibrium values of P are obtained when G(P) = 0= —-S+ R =0:—AP +

P2
1+PpP2

Use the formula in Technical Appendix A3. Quadratic

ThEVE _1EVB b A= b2 —
2a 22

equations to find P =
4ac =1 — 422

When 1=0.8: A=1-4(0.8)>=-156<0, so
we have only one stable equilibrium at P; = 0 and
no other equilibrium when 4 > AZigh'

G is negative and downward-sloping, so the
resilience capacity of the lake is sufficiently large for
it to remain stable regardless of pollution levels.

iii.
One stable equilibrium at P; = 0 and another
equilibrium when 2 = 0.5:A=1-4(0.5)2=0=>

1
P, = 2(0.5)

A = 0.5 corresponds to the low critical level A7,,,
and we can observe that the G(P) curve presents a
hump for intermediate levels of P. Unlike P;, P, is
an unstable equilibrium, so, over time, the lake will
return to its original condition thanks to the gradual
reduction in phosphorus.

=0=>AP(1+P?)—P2=0=>P[A(1+P?)—P]=0=>P[AP2-P+1]=0=>
P; = 0 and P,, P; depend on the value for A.
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Figure C4.7: Stock growth when lambda = 0.8
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Figure C4.8: Stock growth when lambda = 0.5
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iv.

One stable equilibrium at P; = 0 and another equilibrium when 1 = 0.4: A = 1 — 4(0.4)? = 0.36 =

_1-1036 _ _ 1++036 _
P, = BT 0.5and P; = s =

For low values of A < A{,,,, there are 3 equilibria.
P, and P3 are stable and P, is unstable. Over time,
for low levels of P < P,, the lake will return to its
pristine conditions. However, for levels of P > P,,
the phosphorus concentration will gradually
increase to reach its steady state level P;. This
means that the resilience capacity of the lake is
too weak, leading to a phosphorous concentration
that remains high.

V.

When the resilience capacity of the lake is
large, i.e. 4> Aj;5n, the P concentration
gradually sinks over time, allowing the lake to

restore its initial pristine conditions. This is pe
true regardless of the magnitude of %
phosphorus discharges. *%
s
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Figure C4.9: Stock growth when A = 0.4
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Figure C4.10: Evolution of P over time when A = 0.8

When the resilience capacity of the lake is
intermediate, i.e. Af,, <A <Ap;gy, the P
concentration gradually declines over time
and the lake recovers its initial conditions.
However, compared with a high resilience
capacity, the natural restoration process takes
longer for more severe discharges. The
process slows down until the hump of the
G(P) curve is reached (convex part of the
trajectory) and then accelerates again
(concave part of the trajectory).
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Figure C4.11: Evolution of P over time when A = 0.6

© Grether and Monney (2024) — chapter 4 - 8



When the resilience capacity of the lake is
small, i.e. A< A4j,,, the P(t) trajectories
depend on the magnitude of the shocks.
Natural restoration will only occur in the case
of small P discharges. For medium and large
shocks, the P concentration will tend towards
the steady state equilibrium P; =2
determined in point iv.

Thus, it is impossible for the lake to return to
its initial pristine conditions if the resilience
capacity of the ecosystem is weak, leading to
permanent eutrophication.
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Figure C4.12: Evolution of P over time when A = 0.4
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