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Principles of sustainability economics: Extended correction guide 

Chapter 4, problems 4.1 to 4.5 

Problem 4.1: Sustainable harvesting 

i. MSY is obtained when 
ௗீ

ௗௌ
ൌ 𝑟 െ 2𝑟

ௌ

ௌ̅
ൌ 0  𝑆 ൌ ௌ̅

ଶ
ൌ 50   𝐺 ൌ ሺ0.02ሻሺ50ሻ ቂ1 െ

ଵ

ଶ
ቃ ൌ 0.5 

 

ii. 𝐺 െ 𝐻 ൌ 0  with  𝐺 ൌ ሺ0.02ሻ𝑆 ቂ1 െ
ௌ

ଵ଴଴
ቃ ൌ 0.02𝑆 െ 0.0002𝑆ଶ  and  𝐻 ൌ 𝜃ሺ𝑀𝑆𝑌ሻ ൌ 0.5𝜃 

where 𝜃 ൌ 0.19 or 𝜃 ൌ 0.51 or 𝜃 ൌ 0.75. Multiplying by 50 and regrouping we obtain the 

following condition for the steady state level of 𝑆: 

0.01𝑆ଶ െ 𝑆 ൅ 25𝜃 ൌ 0 
 

The solutions are given by: 

 

1 േ √1 െ 𝜃
0.02

ൌ 50൫1 േ √1 െ 𝜃൯ 

 

Selecting the largest value in each case gives 𝑆 ൌ 95, 85, 𝑜𝑟 75 if 𝜃 ൌ 0.19, 0.51 𝑜𝑟 0.75 respectively. 

iii. See excel file problem_4.1.xlsx 

 
 

Figure C4.1: Harvesting case 

 

We can check in the excel file that in order to achieve 90% of the gap between steady states (of 5, 15 

and 25 respectively), one has to wait for around 125, 151 or 194 years respectively = the larger the 

gap, the  longer the period, but  less than proportionately  i.e. the  larger the pressure, the faster the 

exhaustion of the resource. 
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Figure C4.2: Restoring case 

 

We can check again in the excel file that in order to achieve 90% of the gap between steady states (of 

5, 15 and 25 respectively), one has to wait for around 117, 122 or 128 years respectively = the larger 

the gap, the longer the period, but again less than proportionately i.e. the larger the pressure on the 

resource has been, the faster the restauration rate of the resource.  

 

Note that this symmetry in behavior between exploiting and restoring the resource is not necessarily 

verified in all ecosystems, as commented in the last section of this chapter on hysteresis. 

 

Problem 4.2: Steady‐state relationships 

 

With 𝐺 ൌ 𝑟𝑆 ቂ1 െ
ௌ

ௌ̅
ቃ and 𝐻 ൌ 𝑞𝐸𝑆, the condition for the steady state, 𝐺 ൌ 𝐻, leads to 𝑟 ቂ1 െ

ௌ

ௌ
ቃ ൌ 𝑞𝐸, 

which  can  be  re‐arranged  as:  𝑆ሺ𝐸ሻ ൌ 𝑆 ቂ1 െ
௤

௥
𝐸ቃ.  Re‐introducing  this  expression  in  the  harvest 

function, one obtains the following parabolas: 𝐻ሺ𝐸ሻ ൌ 𝑞𝑆 ቂ𝐸 െ
௤

௥
𝐸ଶቃ  

𝑇𝐵ሺ𝐸ሻ ൌ 𝑃𝐻ሺ𝐸ሻ ൌ 𝑃𝑞𝑆 ቂ𝐸 െ
௤

௥
𝐸ଶቃ. 

 

Problem 4.3: Economic shock 

 

See the diagram. The 𝑇𝐶 curve becomes flatter. In the case of the open access regime (points 𝐵 and 
𝐵′), this leads to a larger effort level, a smaller harvest, and a scarcity rent that remains equal to zero. 

This means that everybody in the community (i.e. those who fish and those who don't) just earn the 

wage rate, which has decreased, so total income decreases. 
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In the case of efficient harvesting (points 𝐴 and 𝐴′), the effort increases and the harvest also increases. 
The scarcity rent increases for two reasons: i. for a given 𝐸, 𝑇𝐶 is smaller (segment 1) and ii. at the 
new wage rate, the effort level adjusts to its new optimum level (segment 2). So, the welfare of those 
who fish definitely increases. However, for those who do not fish, total income decreases. So, in the 

end, the net impact on the whole community depends on the share of fishermen (if it is sufficiently 

large, total income increases). 

 

Problem 4.4: Numerical simulation 

i.  

 
 

Figure C4.4: Gordon‐Schaefer model 
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Maximum sustainable yield obtained at the hump of the curve i.e. when: 

 
ௗீ

ௗௌ
ൌ 0 ⇒ 0.04 ቀ1 െ

ௌ

ௌ
ቁ െ

ଵ

ௌ
0.04𝑆 ൌ 0 ⇒ 𝑆 ൌ

ଵ

ଶ
𝑆  [C4.1] 

 

Precisions: as 𝐺 ൌ 𝛥𝑆 ൌ 0.04𝑆 ቀ1 െ
ௌ

ௌ
ቁ  we can write: 𝐺 ൌ 𝑢𝑣 where 𝑢 ൌ 0.04𝑆, 𝑣 ൌ 1 െ

ௌ

ௌ
, and then 

apply the derivative of a product of functions i.e. ሺ𝑢𝑣ሻᇱ ൌ 𝑢ᇱ𝑣 ൅ 𝑢𝑣ᇱ 
 

Which leads to 𝑆 ൌ 500 for 𝑆 ൌ 1000, implying 𝐺 ൌ 10 (in thousand units). 

ii. The steady state is obtained when 𝐺 െ 𝐻 ൌ 0, i.e. 0.001𝐸𝑆 ൌ 0.04𝑆 ቀ1 െ
ௌ

ௌ
ቁ, from which we 

obtain 0.001𝐸 ൌ 0.04 ቀ1 െ
ௌ

ௌ
ቁ, so 𝐸 ൌ 40 ቀ1 െ

ௌ

ௌ
ቁ and as 𝑆 ൌ 1000, 𝐸 ൌ 40 ቀ1 െ

ௌ

ଵ଴଴଴
ቁ, so: 

𝑆 ൌ 1000 െ 25𝐸  [C4.2] 

 

Plugging back this equation into 𝐻 ൌ 0.001𝐸𝑆, one obtains the amount harvested, in thousand units. 

If we multiply that by 1 (i.e. one thousand francs per unit, or 1 million francs per thousand units), we 

obtain total benefit, in million francs, i.e. : 

   

𝑇𝐵 ൌ 0.001𝐸ሺ1000 െ 25𝐸ሻ ൌ 𝐸 െ 0.025𝐸ଶ  [C4.3] 

 

It can be checked that the maximum is obtained for 𝐸 ൌ 20, i.e. 𝑆 ൌ 500, which is consistent with the 
maximum sustainable yield identified at point i. 

Precision: 𝑇𝐵ᇱ ൌ 1 െ 0.05𝐸, so setting 𝑇𝐵′ ൌ 0 (maximum) leads indeed to 𝐸 ൌ 20. 
 

Regarding total cost,  it  is obtained by multiplying 𝐸  (in thousand days of  fishing) by 0.5  (thousand 
francs per fishing day), i.e., in million francs: 

 

𝑇𝐶 ൌ 0.5𝐸  [C4.4] 
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Figure C4.5: Total benefit, total cost, and fish stock 

iii.  

The efficient effort is obtained when 𝑑𝑇𝐵 ോ 𝑑𝐸 ൌ 1 െ 0.05𝐸 ൌ 𝑑𝑇𝐶 ോ 𝑑𝐸 ൌ 0.5, which leads to 𝐸௘ ൌ
𝐸 ൌ 10 and (using [2]), 𝑆௘ ൌ 750 
 

The open‐access fishing level is obtained when 𝑇𝐵 ൌ 𝑇𝐶 i.e., after a few manipulations, when 𝐸௖ ൌ
20 and (using [2]), 𝑆௖ ൌ 500. 
 

The  social  welfare  loss  is  given  by  𝑇𝐵ሺ𝐸௘ሻ െ 𝑇𝐶ሺ𝐸௘ሻ ൌ 7.5 െ 5 ൌ 2.5  million  francs,  and  the 

overfishing intensity is 𝐸௖ ോ 𝐸௘ ൌ 2. 
 

In this very special case, the open‐access fishing effort corresponds to the maximum sustainable yield 

(this cannot be generalized). 

iv.  

First, in the case of a decrease in the wage rate, the new total cost is: 𝑇𝐶ଶ ൌ 0.25𝐸. As for point iii the 
efficient fishing effort is obtained for 𝑑𝑇𝐵 ോ 𝑑𝐸 ൌ 𝑑𝑇𝐶 ോ 𝑑𝐸, leading to 1 െ 005𝐸 ൌ 0.25 and thus 
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𝐸௘ ൌ 15, 𝑆௘ ൌ 625. As for point iii the open‐access fishing effort is obtained for 𝑇𝐵 ൌ 𝑇𝐶, leading to 
𝐸௖ ൌ 30 and 𝑆௖ ൌ 250. 
 

As opportunity costs are lower, a larger fishing effort is accepted, and social welfare is optimized for 

a larger harvest. The stock of fishes (𝑆) decreases strongly following this reduction in labor costs.  
 

Second, in the case of an increase in the fish price: 𝑃ଶ ൌ 1.5, 𝑇𝐵 becomes 𝑇𝐵ଶ ൌ 0.0015𝐸ሺ1000 െ
25𝐸ሻ ൌ 1.5𝐸 െ 0.0375𝐸ଶ. Thus, 𝐸௘ ൌ 13.333, 𝑆௘ ൌ 666.675, 𝐸௖ ൌ 26.667 and 𝑆௖ ൌ 333.325. The 
increase in the price of fish increases 𝑇𝐵, and with it the fishing effort, which leads to a decrease in 
the fish stock. 

 

Whatever the case, the intensity of overfishing is unchanged (𝐸௖ ോ 𝐸௘ ൌ 2). 

v.  

One must  find  𝑡  (in  thousand  francs per day)  such  that  the new  total  cost  schedule with  the  tax  
(ሺ0.5 ൅ 𝑡ሻ𝐸)  intersects  the  total  benefit  schedule  at  the  vertical  of  𝐸௘,  that  means  when 

ሺ0.5 ൅ 𝑡ሻ𝐸௘ ൌ 𝐸௘ െ 0.025ሺ𝐸௘ሻଶ, from which we obtain, replacing 𝐸௘  by 10, 𝑡 ൌ 0.25 thousand francs 
per day, i.e. an equivalent ad valorem tax of 50%. 

vi.  

One must first find the efficient effort in this case, denoted by 𝐸௔௣௣. It is obtained by equalizing the 
net marginal  revenue  of  the  decrease  in  effort,  i.e. െሺ𝑑𝑇𝐵 ോ 𝑑𝐸 െ 𝑑𝐶𝑇 ോ 𝑑𝐸ሻ ൌ െሺ1 െ 0.05𝐸 െ
0.5ሻ ൌ െ0.5 ൅ 0.05𝐸, with the corresponding marginal cost, i.e. 0.25. One obtains 𝐸௔௣௣ ൌ 15. Then, 
if one repeats the same procedure as for point v., but for that effort level, i.e. ሺ0.5 ൅ 𝑡ሻ𝐸௔௣௣ ൌ 𝐸௔௣௣ െ
0.025ሺ𝐸௔௣௣ሻଶ, one obtains 𝑡 ൌ 0.125,  i.e. an equivalent ad valorem tax of 25%.  Intuitively, as this 

policy is more costly than at point v, it must be applied with a lower intensity. 

 

Problem 4.5: Lake eutrophication 

 

See the completed Excel file problem_4.5.xlsx 
 

i. As  the  phosphorus  concentration  P 

increases, recycling 𝑅 increases, but the 
relationship  is  not  linear,  i.e.  the 

recycling rate 
డோ

డ௉
 is not constant.  

𝑅 is  influenced  by  the  hypolimnion,  i.e.  the 

degree of oxygenation of the bottom layer of the 

lake. With low levels of 𝑃, when  it increases, 𝑅 
increases slowly, because the hypolimnion has enough oxygen. At  intermediate  levels of 𝑃, oxygen 
levels drop, boosting up 𝑅. Once the  inflexion point has been reached, at high  levels of 𝑃, 𝑅 slows 
again because the lake bottom constantly lacks oxygen. 
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Figure C4.6: Evolution of 𝑅ሺ𝑃ሻ 
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To determine  the  inflexion point of 𝑅ሺ𝑃ሻ, we compute  the  first derivative 
ௗோ

ௗ௉
ൌ

ଶ௉൫ଵା௉మ൯ି௉మሺଶ௉ሻ

ሺଵା௉మሻమ
ൌ

ଶ௉

ሺଵା௉మሻమ
 and determine its maximum value: 

ௗమோ

ௗ௉మ
ൌ

ଶ൫ଵା௉మ൯
మ
ିଶ௉⋅ଶ൫ଵା௉మ൯⋅ଶ௉

ሺଵା௉మሻర
ൌ

ଶ൫ଵା௉మ൯ି଼௉మ

ሺଵା௉మሻయ
ൌ

ଶି଺௉మ

ሺଵା௉మሻయ
 and 

evaluating  to  0: 
ௗమோ

ௗ௉మ
ൌ 0 ⇒

ଶି଺௉మ

ሺଵା௉మሻయ
 ൌ 0 ⇒ 2 െ 6𝑃ଶ ൌ 0 ⇒ 𝑃ଶ ൌ

ଵ

ଷ
⇒ 𝑃 ൌ

ଵ

√ଷ
  and  𝑅 ൌ

ଵ/ଷ

ସ/ଷ
ൌ 0.25. 

Note that 𝑃 has to be positive, so we only have 1 solution. 

To find 𝜆௛௜௚௛
௖ , which corresponds to the slope at the inflexion point, we have to substitute  𝑃 ൌ

ଵ

√ଷ
 in 

ௗோ

ௗ௉
, which gives 

ଶ
భ

√య

ቀଵାሺ
భ

√య
ሻమቁ

మ ≅
ଷ√ଷ

଼
. 

 

ii. The steady state equilibrium values of 𝑃 are obtained when 𝐺ሺ𝑃ሻ ൌ 0 ⇒ െ𝑆 ൅ 𝑅 ൌ 0: െ𝜆𝑃 ൅
௉మ

ଵା௉మ
ൌ 0 ⇒ 𝜆𝑃ሺ1 ൅ 𝑃ଶሻ െ 𝑃ଶ ൌ 0 ⇒ 𝑃ሾ𝜆ሺ1 ൅ 𝑃ଶሻ െ 𝑃ሿ ൌ 0 ⇒ 𝑃ሾ𝜆𝑃ଶ െ 𝑃 ൅ 𝜆ሿ ൌ 0 ⇒ 

𝑃ଵ ൌ 0 and 𝑃ଶ, 𝑃ଷ depend on the value for 𝜆.  

Use the formula in Technical Appendix A3. Quadratic 

equations to find 𝑃 ൌ
ି௕ േ √∆

ଶ௔
ൌ

ଵ േ √∆

ଶఒ
 with ∆ ൌ 𝑏ଶ െ

4𝑎𝑐 ൌ 1 െ 4𝜆ଶ. 
 

When  𝜆 ൌ 0.8:   ൌ 1 െ 4ሺ0.8ሻଶ ൌ െ1.56 ൏ 0,  so 
we have only one stable equilibrium at 𝑃ଵ ൌ 0 and 
no other equilibrium when 𝜆 ൐ 𝜆௛௜௚௛

௖ .  

𝐺  is  negative  and  downward‐sloping,  so  the 

resilience capacity of the lake is sufficiently large for 

it to remain stable regardless of pollution levels. 

 

iii.  

One stable equilibrium at 𝑃ଵ ൌ 0 and another 
equilibrium when 𝜆 ൌ 0.5:  ൌ 1 െ 4ሺ0.5ሻଶ ൌ 0 ⇒

𝑃ଶ ൌ
ଵ

ଶሺ଴.ହሻ
ൌ 1. 

𝜆 ൌ 0.5 corresponds to the low critical level 𝜆௟௢௪
௖  

and we can observe that the 𝐺ሺ𝑃ሻ curve presents a 
hump for intermediate levels of 𝑃. Unlike 𝑃ଵ,  𝑃ଶ is 
an unstable equilibrium, so, over time, the lake will 

return to its original condition thanks to the gradual 

reduction in phosphorus. 
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Figure C4.7: Stock growth when lambda = 0.8 
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Figure C4.8: Stock growth when lambda = 0.5 
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iv.  

One stable equilibrium at 𝑃ଵ ൌ 0 and another equilibrium when 𝜆 ൌ 0.4:  ൌ 1 െ 4ሺ0.4ሻଶ ൌ 0.36 ⇒

𝑃ଶ ൌ 
ଵ ି √଴.ଷ଺

ଶሺ଴.ସሻ
ൌ 0.5 and 𝑃ଷ ൌ

ଵ ା √଴.ଷ଺

ଶሺ଴.ସሻ
ൌ 2 

For low values of 𝜆 ൏ 𝜆௟௢௪
௖ , there are 3 equilibria.  

𝑃ଵ and 𝑃ଷ are stable and 𝑃ଶ is unstable. Over time, 

for low levels of 𝑃 ൏ 𝑃ଶ, the lake will return to its 
pristine conditions. However, for levels of 𝑃 ൐ 𝑃ଶ, 
the  phosphorus  concentration  will  gradually 

increase  to  reach  its  steady  state  level  𝑃ଷ.  This 
means  that  the  resilience  capacity of  the  lake  is 

too weak, leading to a phosphorous concentration 

that remains high. 

 

v.  

When  the  resilience  capacity  of  the  lake  is 

large,  i.e.  𝜆 ൐ 𝜆௛௜௚௛
௖ ,    the  𝑃  concentration 

gradually sinks over time, allowing the lake to 

restore  its  initial  pristine  conditions.  This  is 

true  regardless  of  the  magnitude  of 

phosphorus discharges.  

 

 

 

 

 

When  the  resilience  capacity  of  the  lake  is 

intermediate,  i.e.  𝜆௟௢௪
௖ ൏ 𝜆 ൏ 𝜆௛௜௚௛

௖ ,  the  𝑃 
concentration  gradually  declines  over  time 

and  the  lake  recovers  its  initial  conditions. 

However,  compared  with  a  high  resilience 

capacity, the natural restoration process takes 

longer  for  more  severe  discharges.  The 

process  slows  down  until  the  hump  of  the 

𝐺ሺ𝑃ሻ  curve  is  reached  (convex  part  of  the 
trajectory)  and  then  accelerates  again 

(concave part of the trajectory). 
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Figure C4.9: Stock growth when 𝜆 ൌ 0.4  
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Figure C4.10: Evolution of 𝑃 over time when 𝜆 ൌ 0.8 
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Figure C4.11: Evolution of 𝑃 over time when 𝜆 ൌ 0.6 
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When  the  resilience  capacity  of  the  lake  is 

small,  i.e.  𝜆 ൏ 𝜆௟௢௪
௖ ,  the  𝑃ሺ𝑡ሻ trajectories 

depend  on  the  magnitude  of  the  shocks. 

Natural restoration will only occur in the case 

of small 𝑃 discharges. For medium and  large 

shocks, the 𝑃 concentration will tend towards 
the  steady  state  equilibrium  𝑃ଷ ൌ 2 
determined in point iv. 

Thus, it is impossible for the lake to return to 

its  initial pristine conditions  if  the  resilience 

capacity of the ecosystem is weak, leading to 

permanent eutrophication. 
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Figure C4.12: Evolution of 𝑃 over time when 𝜆 ൌ 0.4 


